【24h】

Three-way-catalyst induced benzene formation: A precursor study

机译:三元催化剂诱导的苯形成:前体研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The implementation of the three-way-catalyst technology was the major step for pollutant abatement of gasoline vehicles. There are, however, situations, where the engine has to be operated at sub-stoichiometric combustion. At such fuel-rich conditions, an intense formation of benzene was observed over a Pd/Rh-based three-way-catalyst (TWC), when operating the catalyst in a critical temperature window of 600-730 degrees C. At least four different reaction pathways can lead to benzene formation on the catalyst, viz. (i) dealkylation of alkylbenzenes under steam reforming conditions, (ii) hydrodealkylation, (iii) aromatization of cyclohexanes, and (iv) cyclotrimerization of ethyne. Based on the engine-out exhaust composition only routes (i) and (ii) seem to be reasonable. The pre-catalyst application of 12 different alkylbenzenes indeed revealed that benzene formation is possible from all these precursors. At most up to 60% of the spiked precursors were converted to benzene. For meta- and para-substituted alkylbenzenes, a multi-step mechanism is proposed because partial dealkylation products such as toluene were formed as well. But a different, one-step mechanism is assumed for ortho-substituted alkylbenzenes, since no intermediates could be detected. No C-C-bond cleavage was observed within alkyl side chains. It is concluded that dealkylation reactions of alkylbenzenes are the major pathways leading to benzene formation in the TWC. Because fuel-rich combustion conditions have to be applied for the regeneration of deNO(x) traps or certain particulate traps as well, this chemistry might also be of relevance for these exhaust gas treatment systems. (c) 2006 Elsevier B.V. All rights reserved.
机译:三元催化技术的实施是汽油车污染物减排的重要一步。但是,在某些情况下,发动机必须以低于化学计量的燃烧运行。在这种富含燃料的条件下,当催化剂在600-730摄氏度的临界温度范围内运行时,会在Pd / Rh基三元催化剂(TWC)上观察到强烈的苯形成。反应途径可导致在催化剂上形成苯,即。 (i)在蒸汽重整条件下烷基苯的脱烷基,(ii)加氢脱烷基,(iii)环己烷的芳构化,和(iv)乙炔的环三聚。基于发动机排出的废气成分,似乎只有路线(i)和(ii)是合理的。实际上,在12种不同的烷基苯的催化剂上应用表明,所有这些前体都可能形成苯。最多有60%的加标前体转化为苯。对于间位和对位取代的烷基苯,由于还形成了部分脱烷基化产物(如甲苯),因此提出了多步机理。但是,对于邻位取代的烷基苯,假设采用另一种单步机制,因为无法检测到任何中间体。在烷基侧链内未观察到C-C键断裂。结论是烷基苯的脱烷基反应是导致TWC中苯形成的主要途径。因为还必须将富含燃料的燃烧条件应用于deNO(x)捕集阱或某些颗粒捕集阱的再生,所以这种化学性质也可能与这些废气处理系统相关。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号