首页> 外文期刊>Annals of Biomedical Engineering: The Journal of the Biomedical Engineering Society >Micro-structural and Biaxial Creep Properties of the Swine Uterosacral-Cardinal Ligament Complex
【24h】

Micro-structural and Biaxial Creep Properties of the Swine Uterosacral-Cardinal Ligament Complex

机译:猪子宫ac-主韧带复合物的微结构和双轴蠕变特性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The uterosacral ligament and cardinal ligament (USL/CL) complex is the major suspensory tissue of the uterus, cervix, and vagina. This tissue is subjected primarily to bi-axial forces in-vivo that significantly alter its structure and dimension over time, compromising its support function and leading to pelvic floor disorders. In this study, we present the first rigorous characterization of the collagen fiber microstructure and creep properties of the swine USL/CL complex by using scanning electron microscopy and planar biaxial testing in combination with three-dimensional digital image correlation. Collagen fiber bundles were found to be arranged into layers. Although the fiber bundles were oriented in multiple directions, 80.8% of them were aligned within +/- 45 to the main in-vivo loading direction. The straightness parameter, defined as the ratio of the end-to-end distance of a fiber bundle to its length, varied from 0.28 to 1.00, with 95.2% fiber bundles having a straightness parameter between 0.60 and 1.00. Under constant equi-biaxial loads of 2 and 4 N, the USL/CL complex exhibited significant creep both along the main in-vivo loading direction (the parallel direction) and along the direction perpendicular to it (the perpendicular direction). Specifically, over a 120-min period, the mean strain increased by 20-34 in the parallel direction and 33-41 in the perpendicular direction. However, there was no statistically significant difference in creep strains observed after 120 min between the parallel and perpendicular directions for either the 2 or 4 N load case. Creep proceeded slightly faster in the perpendicular direction under the equi-biaxial load of 2 N than under the equi-biaxial load of 4 N (). It proceeded significantly faster in the parallel direction under the equi-biaxial loads of 2 N than under the equi-biaxial loads of 4 N (). Overall, our findings contribute to a greater understanding of the biomaterial properties of the USL/CL complex that is needed for the development of new surgical reconstruction methods and mesh materials for pelvic floor disorders.
机译:子宫ac韧带和主韧带(USL / CL)复合体是子宫,子宫颈和阴道的主要悬吊组织。该组织主要在体内受到双轴力,该双轴力会随着时间的推移显着改变其结构和尺寸,损害其支撑功能并导致骨盆底疾病。在这项研究中,我们通过扫描电子显微镜和平面双轴测试结合三维数字图像相关性,对猪USL / CL复合物的胶原纤维微结构和蠕变特性进行了首次严格的表征。发现胶原蛋白纤维束排列成层。尽管纤维束在多个方向上取向,但它们中的80.8%相对于体内主要装载方向在+/- 45以内排列。直度参数定义为纤维束的端到端距离与其长度的比率,范围从0.28到1.00,其中95.2%的纤维束的直度参数在0.60和1.00之间。在2 N和4 N的恒定等双轴载荷下,USL / CL复合物沿主要体内载荷方向(平行方向)和垂直于其的方向(垂直方向)均显示出明显的蠕变。具体而言,在120分钟内,平均应变在平行方向上增加20-34,在垂直方向上增加33-41。但是,对于2或4 N载荷情况,在平行方向和垂直方向之间120分钟后观察到的蠕变应变在统计学上没有显着差异。在2 N的等双轴载荷下,蠕变在垂直方向上的运动比在4 N()的等双轴载荷下更快。在2 N的等双轴载荷下,它在平行方向上的前进比在4 N()的等双轴载荷下更快。总体而言,我们的发现有助于更好地理解USL / CL复合物的生物材料特性,这对于开发新的手术重建方法和骨盆底疾病的网状材料是必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号