...
首页> 外文期刊>Annals of Biomedical Engineering: The Journal of the Biomedical Engineering Society >Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems.
【24h】

Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems.

机译:模拟和实验研究相结合的红细胞在微流控系统中的大变形。

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate the biophysical characteristics of healthy human red blood cells (RBCs) traversing microfluidic channels with cross-sectional areas as small as 2.7 x 3 mum. We combine single RBC optical tweezers and flow experiments with corresponding simulations based on dissipative particle dynamics (DPD), and upon validation of the DPD model, predictive simulations and companion experiments are performed in order to quantify cell deformation and pressure-velocity relationships for different channel sizes and physiologically relevant temperatures. We discuss conditions associated with the shape transitions of RBCs along with the relative effects of membrane and cytosol viscosity, plasma environments, and geometry on flow through microfluidic systems at physiological temperatures. In particular, we identify a cross-sectional area threshold below which the RBC membrane properties begin to dominate its flow behavior at room temperature; at physiological temperatures this effect is less profound.
机译:我们调查横穿微流体通道的健康人类红细胞(RBCs)的生物物理特征,其横截面积小至2.7 x 3毫米。我们将单个RBC光镊和流量实验与基于耗散粒子动力学(DPD)的相应模拟相结合,并且在验证DPD模型后,进行了预测模拟和伴随实验,以量化不同通道的细胞变形和压力-速度关系大小和生理相关温度。我们讨论了与RBC的形状转变相关的条件,以及在生理温度下通过微流体系统流动的膜和细胞溶胶粘度,血浆环境和几何形状的相对影响。尤其是,我们确定了一个横截面积阈值,在该阈值以下,RBC膜的性能开始在室温下开始主导其流动行为。在生理温度下,这种作用不太明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号