...
首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Nano/microscale roughness control of accident-tolerant Cr- and CrAl-coated surfaces to enhance critical heat flux
【24h】

Nano/microscale roughness control of accident-tolerant Cr- and CrAl-coated surfaces to enhance critical heat flux

机译:纳米/微观粗糙度控制事故耐受的Cr-和Cral涂层表面,以增强临界热通量

获取原文
获取原文并翻译 | 示例
           

摘要

This study aimed to improve the thermal safety of accident-tolerant fuel (ATF) cladding by enhancing the pool boiling critical heat flux (CHF) through control of the nano/microscale roughness of ATF-functional Cr- and CrAl-coated surfaces. To diversify the surface structures at the nano/microscale, we ground the surface to achieve the typical roughness range of a nuclear fuel cladding and then deposited the ATF candidate materials of Cr and CrAl on the ground surface. 17 test surfaces were fabricated by grouping three types of surface structures: microstructure, nanostructure, and nano/microstructure. The structural feature was parametrically categorized based on the arithmetic roughness height R-a at microscale and the surface area ratio r(n) at nanoscale. While R-a was observed to influence both the nucleate boiling efficiency and CHF, r(n) was not capable of enhancing them both exclusively. Nonetheless, a synergistic effect of R-a and r(n) on the CHF was observed. The CHF values of microstructure, nanostructure, and nano/microstructure were enhanced by 19%, 9%, and 79%, respectively. A capillary wicking experiment showed that an increase in surface roughness leads to a decrease in the dry area; therefore, a potential increase in the liquid area fraction of the boiling surface contributes to additional evaporation.
机译:该研究旨在通过控制ATF功能性Cr-和Cral涂覆表面的纳米/微尺度粗糙度来提高事故耐受燃料(ATF)包层的热安全性。为了使纳米/微尺度的表面结构多样化,我们将表面接地以实现核燃料包层的典型粗糙度范围,然后在地面上沉积Cr和Cral的ATF候选材料。通过分组三种表面结构来制造17个测试表面:微观结构,纳米结构和纳米/微观结构。结构特征是基于在纳米级的微尺度和表面积比R(n)的算术粗糙度高度R-A的参数分类。虽然观察到R-A影响核心沸腾效率和CHF,但r(n)不能专门增强它们。尽管如此,观察到R-A和R(N)对CHF的协同作用。微观结构,纳米结构和纳米/微观结构的CHF值分别提高了19%,9%和79%。毛细管芯吸实验表明,表面粗糙度的增加导致干燥区域的降低;因此,沸点的液体面积分数的潜在增加有助于额外的蒸发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号