...
首页> 外文期刊>ACS applied materials & interfaces >Diffusion-Controlled Faradaic Charge Storage in High-Performance Solid Electrolyte-Gated Zinc Oxide Thin-Film Transistors
【24h】

Diffusion-Controlled Faradaic Charge Storage in High-Performance Solid Electrolyte-Gated Zinc Oxide Thin-Film Transistors

机译:高性能固体电解质门控氧化锌薄膜晶体管中的扩散控制的游艇蓄能储存

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An electrochemical device capable of manifesting reversible charge storage at the interface of an active layer offers formidable advantages, such as low switching energy and long retention time, in realizing synaptic behavior for ultralow power neuromorphic systems. Contrary to a supercapacitor-based field-effect device that is prone to low memory retention due to fast discharge, a solid electrolyte-gated ZnO thin-film device exhibiting a battery-controlled charge storage mechanism via mobile charges at its interface with tantalum oxide is demonstrated. Analysis via cyclic voltammetry and chronoamperometry uniquely distinguishes the battery behavior of these devices, with an electromotive force generated due to polarization of charges strongly dependent on the scan rate of the applied voltage. The Faradaic-type diffusion-controlled charge storage mechanism exhibited by these devices is capable of delivering robust enhancement in the channel conductance and leads to a superior ON OFF ratio of 10(8)-10(9). The nonvolatile behavior of the interface charge storage and slow diffusion of ions is utilized in efficiently emulating spike timing-dependent plasticity (STDP) at similar time scales of biological synapses and unveils the possibility of STDP behavior using multiple in-plane gates that alleviate additional requirement of waveform-shaping circuits.
机译:能够在有源层的界面处表现出可逆电荷存储的电化学装置提供了强大的优点,例如低开关能量和长期保留时间,实现了超级功率神经形态系统的突触行为。与基于超级电容器的现场效应装置相反,由于快速放电,易于低存储器保留,固体电解质门控ZnO薄膜器件通过其与钽钽界面的移动电荷显示电池控制的电荷存储机构展示。通过循环伏安法和计时率的分析唯一地区分这些装置的电池行为,其由于电荷的极化而产生的电动势而产生的电荷强烈地取决于施加的电压的扫描速率。这些装置表现出的法拉纳型扩散控制电荷储存机制能够在通道电导中提供鲁棒增强,并导致截止比率为10(8)-10(9)。界面电荷存储的非易失性行为和离子的慢速扩散,以有效地模拟了生物突变的类似时间尺度的尖峰定时依赖性塑性(STDP),并使用多个面内门来推出STDP行为的可能性,以减轻其他要求波形整形电路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号