首页> 外文期刊>ACS applied materials & interfaces >A Comprehensive Study of Hydrolyzed Polyacrylamide as a Binder for Silicon Anodes
【24h】

A Comprehensive Study of Hydrolyzed Polyacrylamide as a Binder for Silicon Anodes

机译:水解聚丙烯酰胺作为硅阳极粘合剂的综合研究

获取原文
获取原文并翻译 | 示例

摘要

Silicon anodes have a high theoretical capacity for lithium storage, but current composite electrode formulations are not sufficiently stable under long-term electrochemical cycling. The choice of polymeric binder has been shown to impact stability and capacity of silicon anodes for electrochemical energy storage. While several promising polymeric binders have been identified, there is a knowledge gap in how various physicochemical properties including adhesion, mechanical integrity, and ion diffusion impact electrochemical stability and performance. In this work, we comprehensively investigate the physical properties and performance of a molecular-weight series (3-20 X 10(6) g/mol) of partially hydrolyzed polyacrylamide (HPAM) in silicon anodes. We quantify the mechanical strength, electrolyte uptake, adhesion to silicon, copper, and carbon, as well as electrochemical performance and stability and find that HPAM satisfies many of the properties generally believed to be favorable, including good adhesion, high strength, and electrochemical stability. HPAM does not show any electrolyte uptake regardless of any molecular weight studied, and thin films of mid- and high-molecular-weight HPAM on silicon surfaces suppress lithiation of silicon. The resulting composite electrodes exhibit an electrochemical storage capacity greater than 3000 mAh/g initially and 1639 mAh/g after 100 cycles. We attribute capacity fade to failure of mechanical properties of the binder or an excess of the solid electrolyte interphase layer being formed at the Si surface. While the highest-molecular-weight sample was expected to perform the best given its stronger adhesion and bulk mechanical properties, we found that HPAM of moderate molecular weight performed the best. We attribute this to a trade-off in mechanical strength and uniformity of the resulting electrode. This work demonstrates promising performance of a low-cost polymer as a binder for Si anodes and provides insight into the physical and chemical properties that influence binder performance.
机译:硅阳极具有高理论能力的锂储存能力,但在长期电化学循环下,电流复合电极制剂在长期电化学循环下不充分稳定。已经显示了聚合物粘合剂的选择,以利用用于电化学能量储存的硅阳极的稳定性和容量。虽然已经鉴定了几个有前途的聚合物粘合剂,但在各种物理化学性质包括粘附,机械完整性和离子扩散冲击电化学稳定性和性能的情况下存在知识间隙。在这项工作中,我们全面研究了分子量系列(3-20×10(6)克/mol)在硅阳极中的部分水解聚丙烯酰胺(HPAM)的物理性质和性能。我们量化了机械强度,电解质吸收,硅,铜和碳的粘附,以及电化学性能和稳定性,发现HPAM满足了普遍认为有利的许多性质,包括良好的粘附性,高强度和电化学稳定性。无论研究的任何分子量如何,HPAM都没有显示出任何电解质吸收,以及在硅表面上抑制硅的锂锂的中高分子重量HPAM的薄膜。所得复合电极最初表现出大于3000mAh / g的电化学储存能力,并且在100次循环后1639mAh / g。我们将容量逐渐消失,粘合剂的机械性能或在Si表面上形成的固体电解质相互相位层的机械性能的失效。虽然预期最高分子量样品的鉴于其较强的附着力和散装机械性能,但我们发现中等分子量的HPAM是最佳的。我们将其归因于所得电极的机械强度和均匀性的折衷。这项工作证明了低成本聚合物作为Si阳极粘合剂的备用性能,并提供了影响粘合剂性能的物理和化学性质的洞察力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号