首页> 外文期刊>ACS applied materials & interfaces >Biomimetic Carbon Fiber Systems Engineering: A Modular Design Strategy To Generate Biofunctional Composites from Graphene and Carbon Nanofibers
【24h】

Biomimetic Carbon Fiber Systems Engineering: A Modular Design Strategy To Generate Biofunctional Composites from Graphene and Carbon Nanofibers

机译:仿生碳纤维系统工程:一种从石墨烯和碳纳米纤维产生生物功能复合材料的模块化设计策略

获取原文
获取原文并翻译 | 示例
           

摘要

Carbon-based fibrous scaffolds are highly attractive for all biomaterial applications that require electrical conductivity. It is additionally advantageous if such materials resembled the structural and biochemical features of the natural extracellular environment. Here, we show a novel modular design strategy to engineer biomimetic carbon fiber based scaffolds. Highly porous ceramic zinc oxide (ZnO) microstructures serve as three-dimensional (3D) sacrificial templates and are infiltrated with carbon nanotubes (CNTs) or graphene dispersions. Once the CNTs and graphene coat the ZnO template, the ZnO is either removed by hydrolysis or converted into carbon by chemical vapor deposition. The resulting 3D carbon scaffolds are both hierarchically ordered and free-standing. The properties of the microfibrous scaffolds were tailored with a high porosity (up to 93%), a high Young's modulus (ca. 0.027-22 MPa), and an electrical conductivity of ca. 0.1-330 S/m, as well as different surface compositions. Cell viability, fibroblast proliferation rate and protein adsorption rate assays have shown that the generated scaffolds are biocompatible and have a high protein adsorption capacity (up to 77.32 +/- 6.95 mg/cm(3)) so that they are able to resemble the extracellular matrix not only structurally but also biochemically. The scaffolds also allow for the successful growth and adhesion of fibroblast cells, showing that we provide a novel, highly scalable modular design strategy to generate biocompatible carbon fiber systems that mimic the extracellular matrix with the additional feature of conductivity.
机译:对于需要导电性的所有生物材料应用,碳基纤维支架具有高度吸引力。如果这些材料类似于天然细胞外环境的结构和生化特征,则还是有利的。在这里,我们向工程师铸造碳纤维的支架显示了一种新的模块化设计策略。高度多孔陶瓷氧化锌(ZnO)微结构用作三维(3D)牺牲模板,并用碳纳米管(CNT)或石墨烯分散体渗透。一旦CNT和石墨烯涂覆ZnO模板,通过化学气相沉积通过水解或转化成碳而去除ZnO。所得到的3D碳支架既是分层排序和独立的。微纤维支架的性质量定制,具有高孔隙率(高达93%),高杨氏模量(约0.027-22MPa)和CA的电导率。 0.1-330 s / m,以及不同的表面组合物。细胞活力,成纤维细胞增殖率和蛋白质吸附速率测定表明,产生的支架是生物相容的并且具有高蛋白质吸附能力(高达77.32 +/- 6.95mg / cm(3)),因此它们能够类似于细胞外矩阵不仅在结构上,而且也是生物化学上。支架还允许成纤维细胞的成功生长和粘附,表明我们提供了一种新颖的高度可扩展的模块化设计策略,以产生模拟细胞外基质的生物相容性碳纤维系统,其具有电导率的附加特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号