首页> 外文期刊>ACS applied materials & interfaces >Shallow Trap State-Induced Efficient Electron Transfer at the Interface of Heterojunction Photocatalysts: The Crucial Role of Vacancy Defects
【24h】

Shallow Trap State-Induced Efficient Electron Transfer at the Interface of Heterojunction Photocatalysts: The Crucial Role of Vacancy Defects

机译:浅陷阱状态诱导的杂交光催化界面界面的有效电子转移:空位缺陷的关键作用

获取原文
获取原文并翻译 | 示例
           

摘要

Constructing vacancies has been demonstrated to be an effective way to modulate charge flow in semiconductor photocatalysts. However, the role of vacancies in the interfacial electron transfer (IET) of heterojunction photocatalysts remains poorly understood, which hinders the general design of heterojunction photocatalysts. Herein, by taking g-C_(3)N_(4)/MoS_(2) as a heterojunction photocatalyst prototype, we unravel that vacancies play a critical role in the IET of heterojunction photocatalysts. Theoretical simulations, combined with femtosecond time-resolved diffuse reflectance spectroscopy, give a clear physical picture that N vacancy states act as shallow trap states (STSs) for photogenerated electrons and thereby facilitate the IET process due to a large energy difference between STSs and charge separation states. Moreover, the excess electrons left by the loss of N atoms (producing N vacancies) could partially transfer to MoS_(2) to generate STSs in the forbidden band of MoS_(2), where the transferred photogenerated electrons could be further trapped to efficiently drive H_(2) evolution. This work suggests a promising strategy to tune IET of heterojunction photocatalysts for achieving highly efficient photocatalytic reactions.
机译:构建空缺已经证明是调制半导体光催化剂中电荷流动的有效方法。然而,杂交光催化剂的界面电子转移(IET)中障碍的作用仍然明显,阻碍了异质结光催化剂的一般设计。在此,通过以G-C_(3)N_(4)/ MOS_(2)作为异质结光催化剂原型,我们解开该空位在异质结催化剂的IET中起着关键作用。理论模拟,结合飞秒时间分辨漫反射光谱,给出了N空缺状态作为光生电子的浅陷阱状态(STS)的清晰物理图像,从而由于STS和电荷分离之间的大能量差而平衡IET过程状态。此外,通过丧失n原子(产生n个空位)留下的过量电子可以部分地转移到MOS_(2)中以在MOS_(2)的禁区中产生STS,其中传送的光生电子可以进一步捕获以有效地驱动H_(2)演变。这项工作提出了一种有希望的策略来调整异质结光催化剂,以实现高效的光催化反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号