首页> 美国卫生研究院文献>ACS AuthorChoice >Role of Dissociatively Adsorbed Water on the Formationof Shallow Trapped Electrons in TiO2 Photocatalysts
【2h】

Role of Dissociatively Adsorbed Water on the Formationof Shallow Trapped Electrons in TiO2 Photocatalysts

机译:解离吸附水对地层的作用TiO2光催化剂中的浅陷电子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mismatch between short lifetimes of free charge carriers and slow kinetics of surface redox reactions substantially limits the efficiency of most photocatalytic systems. Hence, the knowledge of trapping and recombination of photogenerated electrons and holes at different time scales is key for a rational optimization of photocatalytic materials. In this study, we used subsecond time-resolved diffuse-reflectance FTIR spectroscopy to investigate how energy and intensity of the incident irradiation affect the dynamics of photogenerated charge carriers in TiO2 P25 photocatalysts subjected to different pretreatments and how shallow trapped electrons (STE) are formed under these conditions. Intensity-dependent measurements demonstrated that electrons and holes generated by 325 and 409 nm irradiation undergo bimolecular and trap-assisted recombination, respectively. Analysis of characteristic times of photogenerated electron absorption rise and decay indicated that the apparent charge carrier dynamics at the time scale of seconds to minutes relate to chemical trapping of photogenerated electrons and holes. The presenceof dissociatively adsorbed water on the oxide surface was requiredfor efficient STE formation. This suggests that STE form at the seconds–minutestime scale upon surface-mediated self-trapping of electrons.
机译:自由电荷载体的短寿命与表面氧化还原反应的慢动力学之间的不匹配实质上限制了大多数光催化系统的效率。因此,光生电子和空穴在不同时间尺度上的俘获和复合的知识是合理优化光催化材料的关键。在这项研究中,我们使用了亚秒级时间分辨的漫反射FTIR光谱技术,研究了入射辐射的能量和强度如何影响经过不同预处理的TiO2 P25光催化剂中光生载流子的动力学,以及如何形成浅陷阱电子(STE)在这些条件下。强度相关的测量结果表明,由325和409 nm辐射产生的电子和空穴分别经历了双分子和陷阱辅助的重组。对光生电子吸收的上升和下降的特征时间的分析表明,在数秒至数分钟的时间尺度上,表观电荷载流子动力学与光生电子和空穴的化学俘获有关。在场在氧化物表面需要解离吸附的水有效地形成STE。这表明STE在数秒至数分钟内形成表面介导的电子自陷的时间尺度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号