...
首页> 外文期刊>ACS applied materials & interfaces >Enhanced Adhesion Energy at Oxide/Ag Interfaces for Low-Emissivity Glasses: Theoretical Insight into Doping and Vacancy Effects
【24h】

Enhanced Adhesion Energy at Oxide/Ag Interfaces for Low-Emissivity Glasses: Theoretical Insight into Doping and Vacancy Effects

机译:低辐射镜氧化物/ Ag界面在氧化物/ Ag界面上增强粘附能量:对掺杂和空位效应的理论洞察

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Low-emissivity glasses rely on multistacked architectures with a thin silver layer sandwiched between oxide layers. The mechanical stability of the silver/oxide interfaces is a critical parameter that must be maximized. Here, we demonstrate by means of quantum-chemical calculations that a low work of adhesion at interfaces can be significantly increased via doping and by introducing vacancies in the oxide layer. For the sake of illustration, we focus on the ZrO2(111)/Ag(111) interface exhibiting a poor adhesion in the pristine state and quantify the impact of introducing n-type dopants or p-type dopants in ZrO2 and vacancies in oxygen atoms (nV(O); with n = 1, 2, 4, 8, 10, 16), zirconium atoms (mV(Zr); with m = 1, 2, 4, 8), or both (nV(O) + mV(Zr); with m/n = 1:2, 1:4, 2:2, 2:4). In the case of doping, interfacial electron transfer promotes an increase in the work of adhesion, from initially 0.16 to similar to 0.8 J m(-2) (n-type) and similar to 2.0 J m(-2) (p-type) at 10% doping. A similar increase in the work of adhesion is obtained by introducing vacancies, e.g., V-O [V-Zr] in the oxide layer yields a work of adhesion of similar to 1.5-2.0 J m(-2) at 10% vacancies. An increase is also observed when mixing V-O and V-Zr vacancies in a nonstoichiometric ratio (nV(O) + mV(Zr); with 2n not equal m), while a stoichiometric ratio of V-O and V-Zr has no impact on the interfacial properties.
机译:低辐射耐光玻璃依赖于多堆架构,薄薄层夹在氧化物层之间。银/氧化物界面的机械稳定性是必须最大化的关键参数。这里,我们通过量子化学计算证明,通过掺杂可以显着增加界面处的粘合性的低功劳,并通过在氧化物层中引入空位。为了说明,我们专注于ZrO2(111)/ Ag(111)界面,其在原始状态下具有差的粘附性,并量化在ZrO2中引入n型掺杂剂或p型掺杂剂的影响和氧原子中的空位(NV(O); N = 1,2,4,8,10,16),锆原子(MV(Zr); M = 1,2,4,8),或两者(NV(O)+ MV(Zr); M / N = 1:2,1:4,2:2,2:4)。在掺杂的情况下,界面电子转移促进粘合性工作的增加,从最初0.16到类似于0.8J m(-2)(n型),类似于2.0J m(-2)(p型)掺杂10%。通过引入空位,例如,氧化物层中的V-O [V-Zr]的粘合性获得类似的增加,得到了10%空位的1.5-2.0Jm(-2)的粘合性。当以非核化计量比(NV(O)+ MV(Zr)混合时,也观察到增加的增加; 2N不等于M),而VO和V-ZR的化学计量比没有影响界面性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号