...
首页> 外文期刊>ACS nano >Controlled Growth of a Large-Size 2D Selenium Nanosheet and Its Electronic and Optoelectronic Applications
【24h】

Controlled Growth of a Large-Size 2D Selenium Nanosheet and Its Electronic and Optoelectronic Applications

机译:控制大尺寸2D硒纳米片的生长及其电子和光电应用

获取原文
获取原文并翻译 | 示例
           

摘要

Selenium has attracted intensive attention as a promising material candidate for future optoelectronic applications. However, selenium has a strong tendency to grow into nanowire forms due to its anisotropic atomic structure, which has largely hindered the exploration of its potential applications. In this work, using a physical vapor deposition method, we have demonstrated the synthesis of large-size, high-quality 2D selenium nanosheets, the minimum thickness of which could be as thin as 5 nm. The Se nanosheet exhibits a strong in-plane anisotropic property, which is determined by angle-resolved Raman spectroscopy. Back-gating field-effect transistors based on a Se nanosheet exhibit p-type transport behaviors with on-state current density around 20 mA/mm at Vds = 3 V. Four-terminal field-effect devices are also fabricated to evaluate the intrinsic hole mobility of the selenium nanosheet, and the value is determined to be 0.26 cm2 V–1 s–1 at 300 K. The selenium nanosheet phototransistors show an excellent photoresponsivity of up to 263 A/W, with a rise time of 0.1 s and fall time of 0.12 s. These results suggest that crystal selenium as a 2D form of a 1D van der Waals solid opens up the possibility to explore device applications.]]>
机译:<![cdata [ src ='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancac3/2017/ancac3.2017.11.issue-10/acsnano.7b04786/20171018/图像/中/ NN-2017-04786U_0008.gif“> Selenium吸引了强烈关注未来光电应用的有希望的候选物。然而,由于其各向异性原子结构,硒具有强烈的倾向于纳米线形式,这在很大程度上阻碍了其潜在应用的探索。在这项工作中,使用物理气相沉积方法,我们已经证明了大尺寸,高质量的2D硒纳米片的合成,最小厚度可以是5nm的薄。 SE Nanosheet表现出强烈的面内各向异性特性,该属性由角度分辨拉曼光谱法测定。基于SE纳米片的后栅场效应晶体管在 v ds ds = 3v.还制造了四端场效应装置以评估硒纳米片的内在空穴迁移率,并且该值被确定为0.26cm 2 v -1 s < Sup> -1 以300k。硒纳米片的光电晶体管显示出高达263A / W的优异光反应性,上升时间为0.1秒,下降时间为0.12 s。这些结果表明,晶体硒作为1D范德瓦尔斯的2D形式,打开了探索器件应用的可能性。]>

著录项

  • 来源
    《ACS nano》 |2017年第10期|共8页
  • 作者单位

    School of Electrical and Computer Engineering Purdue University West Lafayette Indiana 47907 United States;

    School of Electrical and Computer Engineering Purdue University West Lafayette Indiana 47907 United States;

    School of Materials Science and Engineering Purdue University West Lafayette Indiana 47907 United States;

    School of Electrical and Computer Engineering Purdue University West Lafayette Indiana 47907 United States;

    School of Electrical and Computer Engineering Purdue University West Lafayette Indiana 47907 United States;

    School of Electrical and Computer Engineering Purdue University West Lafayette Indiana 47907 United States;

    School of Electrical and Computer Engineering Purdue University West Lafayette Indiana 47907 United States;

    School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 People’s Republic of China;

    School of Mechanical Engineering Purdue University West Lafayette Indiana 47907 United States;

    School of Industry Engineering Purdue University West Lafayette Indiana 47907 United States;

    School of Electrical and Computer Engineering Purdue University West Lafayette Indiana 47907 United States;

    School of Electrical and Computer Engineering Purdue University West Lafayette Indiana 47907 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

    1D crystal structure; 2D nanosheet; electrical transport; photoresponse; selenium;

    机译:1D晶体结构;2D纳米片;电气运输;光响应;硒;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号