首页> 外文期刊>Acta Horticulturae >Carbon transport revisited: a novel approach for solving quasi-stationary carbon transport in a system with Michaelis-Menten sources and sinks
【24h】

Carbon transport revisited: a novel approach for solving quasi-stationary carbon transport in a system with Michaelis-Menten sources and sinks

机译:重新讨论碳运输:一种用于解决迈克莱斯宫内源和水槽系统中的准固定碳运输的新方法

获取原文
获取原文并翻译 | 示例
       

摘要

The Carbon Transport-Resistance Allocation Model (C-TRAM) developed for L-system plant models is based on an analogy between the equations for the osmotic-pressure generated phloem-sap flow and Ohm's law. This analogy has proved to be rather confusingbecause some of the model variables, for example source/sink 'electromotive force', do not have any physiological interpretation. Also, the fact that the transport equations are formulated in terms of phloem-sap flow Jp, while organ growth rates are usually expressed in mass carbohydrate flux Js, does not improve model clarity and consistency. The current paper presents a direct way of solving transport equations based on the Miinch hypothesis, consistent with boundary conditions in the form of Michaelis-Menten source/sink fluxes, and accounting for the effects of carbohydrate concentration on phloem resistance. Starting from a system of equations for steady-state coupled phloem/xylem flow (Hall and Minchin, 2013), for a constant water potential in the xylem, an equation for the solute mass flow Js in a conduit element can be obtained in a closed form. The boundary problem in the context of L-system plant models was solved using analytical transformations and computational methods similar to the folding/unfolding algorithm of C-TRAM but not based on the electric circuit analogy. The performance of the transport model was tested using a simple system where exact analytical solutions were available (Hall and Minchin, 2013). To our knowledge, this is the first L-system model that combines a rigorous treatment of the carbohydrate transport in a growing system with Michaelis-Menten source/sink functions. The model will be useful in cases where the actual value of the carbohydrate concentration in phloemis important, e.g., sugar signalling. Currently the model is being extended to take into account phloem/xylem coupling.
机译:为L-System Plant模型开发的碳传输电阻分配模型(C-Tram)基于渗透压产生的Phloem-SAP流和欧姆法的方程之间的类比。这已经证明,由于一些模型变量,例如源/水槽的电动势',因此没有任何生理解释。此外,在验素-SAP流动JP方面配制了传输方程的事实,而器官生长速率通常在大规模碳水化合物通量JS中表达,则不会提高模型清晰度和一致性。目前纸张基于MIIINCH假设求解传输方程的直接方式,与迈克利斯源/水槽源/水槽源的形式的边界条件一致,并占碳水化合物浓度对韧韧带抗性的影响。从稳态耦合柱形/木质流动(霍尔和MINCHIN,2013)的方程系统开始,对于木门中的恒定水电位,可以在封闭的情况下获得导管元件中的溶质质量流动JS的等式形式。使用与C-Trax的折叠/展开算法类似的分析变换和计算方法,解决了L-System工厂模型中的边界问题,但不是基于电路模拟的折叠/展开算法。使用一个简单的系统测试了传输模型的性能,其中可获得精确的分析解决方案(大厅和Minchin,2013)。据我们所知,这是第一个L-System模型,将碳水化合物运输的严格治疗在具有Michaelis-Menten源/水槽功能的生长系统中结合。该模型在岩石中碳水化合物浓度的实际值重要的情况下是有用的,例如糖信号传导。目前,该模型正在扩展到考虑Phloem / Xylem耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号