首页> 外文OA文献 >Towards understanding the variability in biospheric CO2 fluxes: using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2
【2h】

Towards understanding the variability in biospheric CO2 fluxes: using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2

机译:试图了解生物圈二氧化碳通量的变化:使用FTIR光谱和化学迁移模型研究羰基硫的来源和汇聚及其与CO2的联系

摘要

Understanding carbon dioxide (CO2) biospheric processes is of great importance because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrievals of the atmospheric concentrations of both CO2 and OCS from measured solar absorption spectra. Here, we investigate co-located and quasi-simultaneous FTIR measurements of OCS and CO2 performed at five selected sites located in the Northern Hemisphere. These measurements are compared to simulations of OCS and CO2 using a chemical transport model (GEOS-Chem). The coupled biospheric fluxes of OCS and CO2 from the simple biosphere model (SiB) are used in the study. The CO2 simulation with SiB fluxes agrees with the measurements well, while the OCS simulation reproduced a weaker drawdown than FTIR measurements at selected sites, and a smaller latitudinal gradient in the Northern Hemisphere during growing season when comparing with HIPPO (HIAPER Pole-to-Pole Observations) data spanning both hemispheres. An offset in the timing of the seasonal cycle minimum between SiB simulation and measurements is also seen. Using OCS as a photosynthesis proxy can help to understand how the biospheric processes are reproduced in models and to further understand the carbon cycle in the real world.
机译:了解二氧化碳(CO2)的生物圈过程非常重要,因为陆地交换驱动着大气中CO2的季节和年际变化。仅基于CO 2浓度测量值的大气反演只能确定生物圈的净通量,而不能区分光合作用(吸收)和呼吸作用(产生)。羰基硫化物(OCS)可能会提供一个重要的附加约束条件:植物在光合作用过程中也会吸收,但在呼吸过程中不会释放,因此是区分这些过程的潜在手段。太阳吸收傅里叶变换红外(FTIR)光谱法可从测量的太阳吸收光谱中检索CO2和OCS的大气浓度。在这里,我们调查了位于北半球的五个选定地点对OCS和CO2进行的共址和准同时FTIR测量。使用化学传输模型(GEOS-Chem)将这些测量结果与OCS和CO2的模拟进行比较。研究中使用了来自简单生物圈模型(SiB)的OCS和CO2的耦合生物圈通量。与HIPPO(HIAPER点对点)相比,采用SiB流量的CO2模拟与测量结果非常吻合,而OCS模拟在选定位置的压降较FTIR测量弱,并且北半球在生长季节的纬度梯度较小。观测值)跨越两个半球的数据。还可以看到在SiB模拟和测量之间的最小季节性周期的时间偏移。使用OCS作为光合作用代理可以帮助理解模型中生物圈过程的再现方式,并进一步了解现实世界中的碳循环。

相似文献

  • 外文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号