首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid
【24h】

Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid

机译:Macroscale超润滑性在极压下,通过与离子液体的石墨烯氧化物纳米片的组合使能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The liquid-superlubricity state has rarely been studied under an average contact pressure exceeding 300 MPa at the macroscale. In this work, a robust macroscale liquid-superlubricity state (mu approximate to 0.005) under an extreme pressure of 600 MPa was reported, which was enabled by the combination of graphene-oxide (GO) nanosheets with an ionic liquid (IL) between the frictional pairs of Si3N4 /sapphire. The analysis indicated that a composite boundary layer (formed by IL) at the interface contributed to the excellent antiwear performance, thereby providing a lubricating condition under extreme pressure. Notably, GO nanosheets were directly observed to adsorb on worn surfaces, thereby proving the transformation of the shear interface from Si3N4/sapphire into GO/GO nanosheets. The extreme pressure property and extremely low shear stress between the interlayers of GO nanosheets contributed to the achievement of superlubricity. Therefore, the synergistic effect between GO nanosheets and IL played a dominant role in achieving liquid-superlubricity under extreme pressure at the macroscale. This study provided a novel method to achieve liquid-superlubricity under extreme conditions-by the synergistic effect of 2D materials and liquid molecules-accelerating the achievement of liquid-superlubricity in industrial applications. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在宏观尺寸超过300mPa的平均接触压力下很少研究液体超润滑性状态。在这项工作中,报道了在600MPa的极压下的稳健宏观液体 - 超润滑状态(μm近似为0.005),其通过与离子液体(IL)之间的石墨烯 - 氧化物(GO)纳米片的组合使能摩擦对Si3n4 /蓝宝石。分析表明,在界面处的复合边界层(由IL形成)有助于优异的抗磨性能,从而在极压下提供润滑条件。值得注意的是,直接观察到纳米胸泡吸附在破旧的表面上,从而证明了从Si3N4 / Sapphire的剪切界面的转变为Go / Go Nanoshss。 Go Nanosheet的中间层之间的极压性能和极低的剪切应力导致了超级润滑性的实现。因此,Go Nanosheets和IL之间的协同效应在宏观升压下在极压下实现液体超润滑性而起到主导作用。本研究提供了一种新的方法,在极端条件下实现液体超润滑性 - 通过2D材料和液体分子的协同作用 - 加速工业应用中的液体超级润滑性的实现。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号