...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Self-Limiting Temperature Window for Thermal Atomic Layer Etching of HfO2 and ZrO2 Based on the Atomic-Scale Mechanism
【24h】

Self-Limiting Temperature Window for Thermal Atomic Layer Etching of HfO2 and ZrO2 Based on the Atomic-Scale Mechanism

机译:基于原子尺度机制的HFO2和ZrO2的热原子层蚀刻自限温窗

获取原文
获取原文并翻译 | 示例
           

摘要

HfO2 and ZrO2 are two high-k materials that are important in the downscaling of semiconductor devices. Atomic-level control of material processing is required for the fabrication of thin films of these materials at nanoscale device sizes. Thermal atomic layer etching (ALE) of metal oxides, in which up to one monolayer of the material can be removed, can be achieved by sequential self-limiting (SL) fluorination and ligand-exchange reactions at elevated temperatures. However, to date, a detailed atomistic understanding of the mechanism of thermal ALE of these technologically important oxides is lacking. In this paper, we investigate the hydrogen fluoride (HF) pulse in the first step in the thermal ALE process of HfO2 and ZrO2 using first-principles simulations. We introduce Natarajan-Elliott analysis, a thermodynamic methodology, to compare reaction models representing the self-limiting (SL) and continuous spontaneous etching (SE) processes taking place during an ALE pulse. Applying this method to the first HF pulse on HfO2 and ZrO2, we found that thermodynamic barriers impeding continuous etching are present at ALE-relevant temperatures. We performed explicit HF adsorption calculations on the oxide surfaces to understand the mechanistic details of the HF pulse. A HF molecule adsorbs dissociatively on both oxides by forming metal-F and O-H bonds. HF coverages ranging from 1.0 +/- 0.3 to 17.0 +/- 0.3 HF/nm(2) are investigated, and a mixture of molecularly and dissociatively adsorbed HF molecules is present at higher coverages. Theoretical etch rates of -0.61 +/- 0.02 angstrom/cycle for HfO2 and -0.57 +/- 0.02 angstrom/cycle for ZrO2 were calculated using maximum coverages of 7.0 +/- 0.3 and 6.5 +/- 0.3 M-F bonds/nm(2), respectively (M = Hf, Zr).
机译:HFO2和ZrO2是两种高k材料,可在半导体器件的缩小中重要。在纳米级装置尺寸下,需要在纳米级装置尺寸下制造这些材料的薄膜所需的原子水平控制。可以通过在升高的温度下的升高的温度下序列自限制(SL)氟化和配体交换反应,除去金属氧化物的热原子层蚀刻(ALE),其中可以除去至一单层材料。然而,迄今为止,缺乏对这些技术重要氧化物的热熔机制的详细原子理解。在本文中,我们使用第一原理模拟研究了HFO2和ZrO2的热ALE过程中的第一步中的氟化氢(HF)脉冲。我们介绍了Natarajan-Elliott分析,热力学方法,比较在ALE脉冲期间进行自限制(SL)和连续自发蚀刻(SE)过程的反应模型。将该方法应用于HFO2和ZrO 2上的第一个HF脉冲,我们发现阻抗连续蚀刻的热力学屏障存在于ALE相关的温度下。我们对氧化物表面进行了明确的HF吸附计算,以了解HF脉冲的机械细节。通过形成金属-F和O-H键,HF分子在两种氧化物上分散。研究了1.0 +/- 0.3至17.0 +/- 0.3HF / NM(2)的HF覆盖范围,并在更高的覆盖范围内存在分子和解差异的HF分子的混合物。使用7.0 +/- 0.3和6.5 +/- 0.3 MF键/ nm的最大覆盖率计算HFO2和-0.57 +/- 0.02埃-0.02埃-0.02埃-0.02埃 - 0.02埃循环/ ZrO2的+ 0.02埃/周期的)分别(m = hf,zr)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号