...
首页> 外文期刊>CERAMICS INTERNATIONAL >Improved thermal oxidation growth of non-flaking CuO nanorod arrays on Si substrate from Cu film and their nanoscale electrical properties for electronic devices
【24h】

Improved thermal oxidation growth of non-flaking CuO nanorod arrays on Si substrate from Cu film and their nanoscale electrical properties for electronic devices

机译:从Cu膜及其纳米级电气特性改善了在Si衬底上的非剥落CuO纳米棒阵列的热氧化生长。

获取原文
获取原文并翻译 | 示例
           

摘要

Single crystal cupric oxide (CuO) nanorod (NR) arrays are fabricated on Si substrates via a facile two-step strategy of sputter depositing Cu films followed by thermal oxidation. The Cu film with a structure of Si substrate/Cr or/and Cu fine grain buffer layer/Cu columnar crystal layer has been obtained by a step-by-step deposition process and employing different deposition parameters at each step. This structure is demonstrated to be beneficial for the NR growth and the NRs-substrate adhesion after thermal oxidation. The growth mechanism of the designed layer structure of Cu film and CuO NRs has been investigated. Both the fine grain buffer layer and Cu columnar crystal layer contribute to the diffusion of Cu atoms and the release of thermal stress during heating. To develop a Schottky nanocontact for electronic device, the nanoscale electrical properties of the p-type CuO NRs are characterized by conductive atomic force microscopy (C-AFM). The in-situ current-voltage (I-V) characterization shows that the upright standing CuO NRs exhibit good rectifying characteristics, which is attributed to the high specific surface area caused surface states. This study may promote the practical applications of p-type CuO nanostructures in electrical nanodevices.
机译:通过溅射沉积Cu膜的溅射沉积Cu膜,在Si基板上制造单晶铜氧化物(CUO)纳米峰(NR)阵列。具有Si衬底/ Cr或/和Cu细晶粒缓冲层/ Cu柱状晶体层的Cu膜已经通过阶梯沉积工艺获得并在每个步骤中采用不同的沉积参数。该结构被证明是有益于NR生长和热氧化后的NRS底物粘附。研究了Cu膜和CuO NRS设计层结构的生长机理。细粒缓冲层和Cu柱状晶体层都有助于Cu原子的扩散和加热期间热应力的释放。为了开发用于电子器件的肖特基纳米接触,P型CuO NRS的纳米级电性能的特征在于导电原子力显微镜(C-AFM)。原位电流 - 电压(I-V)表征表明,直立的Cuo NRS表现出良好的整流特性,其归因于高比表面积引起的表面状态。该研究可以促进P型CuO纳米结构在电纳米型中的实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号