首页> 外文期刊>Biophysical Journal >Future Perspective of Single-Molecule FRET Biosensors and Intravital FRET Microscopy
【24h】

Future Perspective of Single-Molecule FRET Biosensors and Intravital FRET Microscopy

机译:单分子FRET生物传感器和腔内式显微镜的未来透视

获取原文
获取原文并翻译 | 示例
           

摘要

Forster (or fluorescence) resonance energy transfer (FRET) is a nonradiative energy transfer process between two fluorophores located in close proximity to each other. To date, a variety of biosensors based on the principle of FRET have been developed to monitor the activity of kinases, proteases, GTPases or lipid concentration in living cells. In addition, generation of biosensors that can monitor physical stresses such as mechanical power, heat, or electric/magnetic fields is also expected based on recent discoveries on the effects of these stressors on cell behavior. These biosensors can now be stably expressed in cells and mice by transposon technologies. In addition, two-photon excitation microscopy can be used to detect the activities or concentrations of bioactive molecules in vivo. In the future, more sophisticated techniques for image acquisition and quantitative analysis will be needed to obtain more precise FRET signals in spatiotemporal dimensions. Improvement of tissue/organ position fixation methods for mouse imaging is the first step toward effective image acquisition. Progress in the development of fluorescent proteins that can be excited with longer wavelength should be applied to FRET biosensors to obtain deeper structures. The development of computational programs that can separately quantify signals from single cells embedded in complicated three-dimensional environments is also expected. Along with the progress in these methodologies, two-photon excitation intravital FRET microscopy will be a powerful and valuable tool for the comprehensive understanding of biomedical phenomena.
机译:Forster(或荧光)共振能量转移(FRET)是在两个荧光团之间的非相互能量转移过程,其位于彼此紧密邻近。迄今为止,已经开发出基于FRET原理的各种生物传感器,以监测活细胞中激酶,蛋白酶,GTP酶或脂质浓度的活性。此外,还基于最近发现这些压力源对细胞行为的影响,产生能够监测机械动力,热量,电场等物理应力的生物传感器的产生。现在可以通过转座技术在细胞和小鼠中稳定地表达这些生物传感器。此外,双光子激发显微镜可用于检测体内生物活性分子的活性或浓度。在未来,将需要更复杂的图像采集和定量分析技术,以获得更加精确的FRET信号,以时尚尺寸。用于小鼠成像的组织/器官位置固定方法的改进是朝向有效图像采集的第一步。荧光蛋白的开发进展应该施加较长波长的荧光蛋白,应施加到FRET生物传感器中以获得更深的结构。还预期了可以单独地量化来自复杂的三维环境中的单个小区的计算程序的计算。随着这些方法的进展,双光子励磁体圈饰体显微镜将是一种强大而有价值的工具,可以全面了解生物医学现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号