...
首页> 外文期刊>ACS Chemical Biology >Discovery of a substrate selectivity motif in amino acid decarboxylases unveils a taurine biosynthesis pathway in prokaryotes
【24h】

Discovery of a substrate selectivity motif in amino acid decarboxylases unveils a taurine biosynthesis pathway in prokaryotes

机译:氨基酸脱羧酶中底物选择性基序的发现揭示了牛磺酸在原核生物中的生物合成途径

获取原文
获取原文并翻译 | 示例

摘要

Taurine, the most abundant free amino acid in mammals, with many critical roles such as neuronal development, had so far only been reported to be synthetized in eukaryotes. Taurine is the major product of cysteine metabolism in mammals, and its biosynthetic pathway consists of cysteine dioxygenase and cysteine sulfinic acid decarboxylase (hCSAD). Sequence, structural, and mutational analyses of the structurally and sequentially related hCSAD and human glutamic acid decarboxylase (hGAD) enzymes revealed a three residue substrate recognition motif (X_1aa_(19)X_2aaX_3), within the active site that is responsible for coordinating their respective preferred amino acid substrates. Introduction of the cysteine sulfinic acid (CSA) motif into hGAD (hGAD-S192F/N212S/F214Y) resulted in an enzyme with a >700 fold switch in selectivity toward the decarboxylation of CSA over its preferred substrate, l-glutamic acid. Surprisingly, we found this CSA recognition motif in the genome sequences of several marine bacteria, prompting us to evaluate the catalytic properties of bacterial amino acid decarboxylases that were predicted by sequence motif to decarboxylate CSA but had been annotated as GAD enzymes. We show that CSAD from Synechococcus sp. PCC 7335 specifically decarboxylated CSA and that the bacteria accumulated intracellular taurine. The fact that CSAD homologues exist in certain bacteria and are frequently found in operons containing the recently discovered bacterial cysteine dioxygenases that oxidize l-cysteine to CSA supports the idea that a bona fide bacterial taurine biosynthetic pathway exists in prokaryotes.
机译:牛磺酸是哺乳动物中最丰富的游离氨基酸,具有许多关键作用,例如神经元发育,到目前为止,据报道仅在真核生物中合成。牛磺酸是哺乳动物中半胱氨酸代谢的主要产物,其生物合成途径由半胱氨酸双加氧酶和半胱氨酸亚磺酸脱羧酶(hCSAD)组成。对结构和顺序相关的hCSAD和人类谷氨酸脱羧酶(hGAD)酶的序列,结构和突变分析显示,在活性位点内有三个残基底物识别基序(X_1aa_(19)X_2aaX_3),负责协调各自的优先选择氨基酸底物。将半胱氨酸亚磺酸(CSA)基序引入到hGAD(hGAD-S192F / N212S / F214Y)中产生的酶在其优选的底物I-谷氨酸上对CSA的脱羧选择性具有> 700倍的切换。出乎意料的是,我们在几种海洋细菌的基因组序列中发现了这种CSA识别基序,促使我们评估了细菌氨基酸脱羧酶的催化特性,该特性由序列基序预测可以使CSA脱羧,但被标注为GAD酶。我们显示来自Synechococcus sp。的CSAD。 PCC 7335专门使CSA脱羧,并且该细菌积累了细胞内牛磺酸。 CSAD同源物存在于某些细菌中,并经常在含有最近发现的将L-半胱氨酸氧化为CSA的细菌半胱氨酸双加氧酶的操纵子中发现,这一事实支持了原核生物存在真正的细菌牛磺酸生物合成途径的想法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号