...
首页> 外文期刊>ACS catalysis >Breaking the Correlation between Energy Costs and Kinetic Barriers in Hydrogen Evolution via a Cobalt Pyridine-Diimine-Dioxime Catalyst
【24h】

Breaking the Correlation between Energy Costs and Kinetic Barriers in Hydrogen Evolution via a Cobalt Pyridine-Diimine-Dioxime Catalyst

机译:通过钴吡啶-二胺-二肟肟催化剂打破氢转化中能量成本和动力学障碍之间的相关性

获取原文
获取原文并翻译 | 示例
           

摘要

A central challenge in the development of inorganic hydrogen evolution catalysts is to avoid deleterious coupling between the energetics of metal site reduction and the kinetics of metal hydride formation. In this work, we combine theoretical and experimental methods to investigate cobalt diimine-dioxime catalysts that show promise for achieving this aim by introducing an intramolecular proton shuttle via a pyridyl pendant group. Using over 200 coupled-cluster-level electronic structure calculations of the Co-based catalyst with a variety of pyridyl substituents, the energetic and kinetic barriers to hydrogen formation are investigated, revealing nearly complete decoupling of the energetics of Co reduction and the kinetics of intramolecular Co hydride formation. These calculations employ recently developed quantum embedding methods that allow for local regions of a molecule to be described using high-accuracy wavefunction methods (such as CCSD(T)), thus overcoming significant errors in the DFT-level description of transition-metal complexes. Experimental synthesis and cyclic voltammetry of the methyl-substituted form of the catalyst indicate that protonation of the pendant group leaves the Co reduction potential unchanged, which is consistent with the theoretical prediction that these catalysts can successfully decouple the electronic structures of the transition-metal and ligand-protonation sites. Additional computational analysis indicates that introduction of the pyridyl pendant group enhances the favorability of intramolecular proton shuttling in these catalysts by significantly reducing the energetic barrier for metal hydride formation relative to previously studied cobalt diimine-dioxime catalysts. These results demonstrate a promising proof of principle for achieving uncoupled and locally tunable intramolecular charge-transfer events in the context of homogeneous transition-metal catalysts.
机译:无机氢释放催化剂的开发中的主要挑战是避免金属位点还原的能量与金属氢化物形成动力学之间的有害偶联。在这项工作中,我们结合理论和实验方法来研究二亚胺-二肟钴催化剂,这些催化剂显示出通过吡啶基侧基引入分子内质子穿梭实现这一目标的希望。使用200个具有多种吡啶基取代基的Co基催化剂的耦合簇级电子结构计算,研究了氢形成的能垒和动力学势垒,揭示了Co还原的能级与分子内动力学的几乎完全解耦氢化钴的形成。这些计算采用了最近开发的量子嵌入方法,该方法允许使用高精度波函数方法(例如CCSD(T))描述分子的局部区域,从而克服了过渡金属配合物在DFT级描述中的重大错误。催化剂的甲基取代形式的实验合成和循环伏安法表明,侧基的质子化使Co还原电位保持不变,这与理论上的预测是一致的,即这些催化剂可以成功地使过渡金属和金属的电子结构解耦。配体质子化位点。额外的计算分析表明,相对于先前研究的钴二亚胺-二肟催化剂,吡啶基侧基的引入通过显着降低金属氢化物形成的能垒,增强了这些催化剂中分子内质子穿梭的有利性。这些结果证明了在均相过渡金属催化剂的背景下实现未偶联和局部可调的分子内电荷转移事件的原理的有希望的证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号