首页> 外文期刊>Biotechnology and Bioengineering >One-pot synthesis of amino-alcohols using a de-novo transketolase and beta-alanine: Pyruvate transaminase pathway in Escherichia coli
【24h】

One-pot synthesis of amino-alcohols using a de-novo transketolase and beta-alanine: Pyruvate transaminase pathway in Escherichia coli

机译:一锅合成氨基醇使用de-novo转酮醇酶和β-丙氨酸:丙酮酸转氨酶途径在大肠杆菌中

获取原文
获取原文并翻译 | 示例
           

摘要

Biocatalysis continues to emerge as a powerful technique for the efficient synthesis of optically pure pharmaceuticals that are difficult to access via conventional chemistry. The power of biocatalysis can be enhanced if two or more reactions can be achieved by a single whole cell biocatalyst containing a pathway designed de-novo to facilitate a required synthetic sequence. The enzymes transketolase (TK) and transaminase (TAm) respectively catalyze asymmetric carbon-carbon bond formation and amine group addition to suitable substrate molecules. The ability of a transaminase to accept the product of the transketolase reaction can allow the two catalysts to be employed in series to create chiral amino-alcohols from achiral substrates. As proof of principle, the beta-alanine: pyruvate aminotransferase (beta-A:P TAm) from Pseudomonas aeruginosa has been cloned, to create plasmid pQR428, for overexpression in E.coli strain BL21gold(DE3). Production of the beta-A:P TAm alongside the native transketolase (overexpressed from plasmid pQR411), in a single E.coli host, has created a novel biocatalyst capable of the synthesis of chiral amino alcohols via a synthetic two-step pathway. The feasibility of using the biocatalyst has been demonstrated by the formation of a single diastereoisomer of 2-amino-1,3,4-butanetriol (ABT) product, in up to mol/mol yield, by the beta-A:P TAm, via transamination of L-erythrulose synthesized by TK, from achiral substrates glycolaldehyde (GA) and beta-hydroxypyruvate (beta-HPA) ABT synthesis was achieved in a one-pot process, using either whole cells of the dual plasmid strain or cell lysate, while the dual alcohol-amine functionality of ABT makes it an excellent synthon for many pharmaceutical syntheses.
机译:生物催化继续作为一种有效合成光学纯药物的强大技术而出现,这些药物很难通过常规化学方法获得。如果一个单一的全细胞生物催化剂可以实现两个或多个反应,而该生物细胞中包含一个经过重新设计以促进所需合成序列的途径,则可以增强生物催化的能力。转酮醇酶(TK)和转氨酶(TAm)分别催化不对称碳-碳键的形成和向适当底物分子中添加胺基。转氨酶接受转酮醇酶反应产物的能力可使两种催化剂串联使用以从非手性底物产生手性氨基醇。作为原理的证明,已经克隆了来自铜绿假单胞菌的β-丙氨酸:丙酮酸氨基转移酶(β-A:PTAM),以产生质粒pQR428,以在大肠杆菌菌株BL21gold(DE3)中过表达。在单个大肠杆菌宿主中,β-A:P TAm与天然转酮醇酶(从质粒pQR411过表达)的产生,创造了一种新型的生物催化剂,能够通过合成的两步途径合成手性氨基醇。通过β-A:P TAm以高达mol / mol的收率形成2-氨基-1,3,4-丁三醇(ABT)产物的单一非对映异构体,已证明了使用生物催化剂的可行性,通过由TK合成的非手性底物乙醇醛(GA)和β-羟基丙酮酸(β-HPA)的L-赤藓糖的转氨作用,使用双质粒菌株的全细胞或细胞裂解液通过一锅法完成ABT合成而ABT的双醇胺功能使其成为许多药物合成的出色合成子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号