...
首页> 外文期刊>American Journal of Physiology >Sites and ionic mechanisms of hypoxic vasoconstriction in frog skin.
【24h】

Sites and ionic mechanisms of hypoxic vasoconstriction in frog skin.

机译:青蛙皮肤缺氧性血管收缩的部位和离子机制。

获取原文
获取原文并翻译 | 示例

摘要

We tested the hypothesis that the cellular mechanisms mediating hypoxic vasoconstriction (HVC) in frog skin, an important vertebrate respiratory organ, are similar to those mediating HVC in the pulmonary vasculature of mammals. An accepted hypothesis in the lung is that alveolar hypoxia alters the redox potential in vascular smooth muscle cells of arterial vessels. This decreases membrane K+ conductance, causing depolarization. Depolarization increases the open probability of L-type Ca2+ channels, facilitating Ca2+ entry into the cell, which leads to vascular smooth muscle contraction and vasoconstriction. We studied the cutaneous microcirculation of the frog (Xenopus laevis) web by enclosing the web in a transparent chamber that was ventilated with different gas mixtures. Arteriolar and venular diameters were measured by video microscopy. Drugs were applied topically or intravascularly. A dose-dependent constriction to hypoxia occurred in arterioles but not venules, although both vessel types constricted to similar degrees to the thromboxane mimetic U-46619. The magnitude of HVC was not associated with arteriolar size. Constriction of arterioles with 4-amino pyridine, a K+-channel antagonist, was blocked by the L-type Ca2+-channel blocker nifedipine. Nifedipine also antagonized HVC and hypercapnic vasoconstriction. Bay K 8664, a drug that increases the open probability of L-type Ca2+ channels, augmented HVC. These data support our hypothesis that the cellular mechanisms mediating HVC are similar in frog skin and mammalian lungs. This similarity between amphibian and mammalian tissues suggests that the mechanisms of HVC may have arisen relatively early in vertebrate evolution. In addition, because of its structural simplicity and easy accessibility, frog skin may be a useful tissue for studying this general phenomenon in vivo.
机译:我们测试了这一假设,即在青蛙皮肤(一种重要的脊椎动物呼吸器官)中介导低氧血管收缩(HVC)的细胞机制与在哺乳动物的肺血管系统中介导HVC的那些机制相似。肺中公认的假说是肺泡缺氧会改变动脉血管的血管平滑肌细胞中的氧化还原电位。这降低了膜K +电导,导致去极化。去极化增加了L型Ca2 +通道的开放可能性,促进Ca2 +进入细胞,从而导致血管平滑肌收缩和血管收缩。我们通过将网包裹在一个装有不同气体混合物通风的透明室内,研究了青蛙网(Xenopus laevis)的皮肤微循环。通过视频显微镜测量小动脉和小静脉的直径。药物局部或血管内使用。尽管两种血管的收缩程度都与血栓烷模拟物U-46619相似,但小动脉中却发生了剂量依赖性的低氧收缩,但小静脉中没有。 HVC的大小与小动脉大小无关。 L型Ca2 +通道阻滞剂硝苯地平阻断了K +通道拮抗剂4-氨基吡啶对小动脉的收缩。硝苯地平还可以拮抗HVC和高碳酸血症性血管收缩。 Bay K 8664是一种增加L型Ca2 +通道开放可能性的药物,可增加HVC。这些数据支持我们的假设,即在蛙皮和哺乳动物肺中介导HVC的细胞机制相似。两栖动物和哺乳动物组织之间的这种相似性表明,HVC的机制可能在脊椎动物进化中相对较早地出现。另外,由于其结构简单和易于接近,青蛙皮肤可能是用于研究体内这种普遍现象的有用组织。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号