...
首页> 外文期刊>ACS applied materials & interfaces >Screw Dislocations in Complex, Low Symmetry Oxides: Core Structures, Energetics, and Impact on Crystal Growth
【24h】

Screw Dislocations in Complex, Low Symmetry Oxides: Core Structures, Energetics, and Impact on Crystal Growth

机译:复杂,低对称氧化物中的螺丝位错:核心结构,高能学及其对晶体生长的影响

获取原文
获取原文并翻译 | 示例

摘要

Determining the atomic structure and the influence of defects on properties of low symmetry oxides have long been an engineering pursuit. Here, we focus on five thermodynamically reversible monoclinic and orthorhombic polymorphs of dicalcium silicates (Ca2SiO3)a key cement constituentas a model system and use atomistic simulations to unravel the interplay between the screw dislocation core energies, nonplanar core structures, and Peierls stresses along different crystallographic planes. Among different polymorphs, we found that the alpha polymorphs (alpha-C2S) has the largest Peierls stress, corresponding to the most brittle polymorph, which make it attractive for grinding processes. Interestingly, our analyses indicate that this polymorphs has the lowest dislocation core energy, making it ideal for reactivity and crystal growth. Generally, we identified the following order in terms of grinding efficiency based on screw dislocation analysis, alpha-C2S > alpha(H)-C2S > alpha(L)-C2S > beta-C2S > gamma-C2S, and the following order in term of reactivity, alpha-C2S > alpha(L)-C2S > gamma-C2S > alpha(H)-C2S > beta-C2S. This information, combined with other deformation-based mechanisms, such as twinning and edge dislocation, can provide crucial insights and guiding hypotheses for experimentalists to tune the cement grinding mechanisms and reactivity processes for an overall optimum solution with regard to both energy consumption and performance. Our findings significantly broaden the spectrum of strategies for leveraging both crystallographic directions and crystal symmetry to concurrently modulate mechanics and crystal growth processes within an identical chemical composition.
机译:长期以来,确定原子结构和缺陷对低对称氧化物性质的影响一直是工程上的追求。在此,我们重点研究硅酸二钙(Ca2SiO3)(一种关键的水泥成分)的五个热力学可逆的单斜晶和正交晶多晶型物,作为一个模型系统,并使用原子模拟揭示了螺旋位错核心能量,非平面核心结构和沿不同晶体学的Peierls应力之间的相互作用。飞机。在不同的多晶型物中,我们发现α多晶型(alpha-C2S)具有最大的Peierls应力,对应于最脆的多晶型,这使其对研磨过程具有吸引力。有趣的是,我们的分析表明,该多晶型物具有最低的位错核心能量,使其非常适合于反应性和晶体生长。通常,基于螺杆位错分析,我们根据磨削效率确定了以下顺序:α-C2S>α(H)-C2S>α(L)-C2S>β-C2S>γ-C2S,反应性,α-C2S>α(L)-C2S>γ-C2S>α(H)-C2S>β-C2S。这些信息与其他基于变形的机制(例如孪晶和边缘错位)相结合,可以为实验人员提供关键的见解和指导性假设,以调整水泥的研磨机理和反应过程,从而在能耗和性能方面实现总体最佳解决方案。我们的发现大大拓宽了利用晶体学方向和晶体对称性在相同化学成分内同时调节力学和晶体生长过程的策略范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号