首页> 外文期刊>ACS applied materials & interfaces >Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries
【24h】

Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries

机译:凝胶聚合物电解质有效渗透到硅涂层垂直排列的碳纳米纤维中作为固态锂离子电池的阳极

获取原文
获取原文并翻译 | 示例
       

摘要

This study demonstrates the full infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers (Si-VACNFs), a high-capacity 3D nanostructured anode, and the electrochemical characterization of its properties as an effective electrolyte/separator for future all-solid-state lithium-ion batteries. Two fabrication methods have been employed to form a stable interface between the gel polymer electrolyte and the Si-VACNF anode. In the first method, the drop-casted gel polymer electrolyte is able to fully infiltrate into the open space between the vertically aligned core-shell nanofibers and encapsulate/stabilize each individual nanofiber in the polymer matrix. The 3D nanostructured Si-VACNF anode shows a very high capacity of 3450 mAh g(-1) at C/10.5 (or 0.36 A g(-1)) rate and 1732 mAh g(-1) at 1C (or 3.8 A g(-1)) rate. In the second method, a preformed gel electrolyte film is sandwiched between an Si-VACNF electrode and a Li foil to form a half-cell. Most of the vertical core-shell nanofibers of the Si-VACNF anode are able to penetrate into the gel polymer film while retaining their structural integrity. The slightly lower capacity of 2800 mAh g(-1) at C/11 rate and similar to 1070 mAh g(-1) at C/1.5 (or 2.6 A g(-1)) rate have been obtained, with almost no capacity fade for up to 100 cycles. Electrochemical impedance spectroscopy does not show noticeable changes after 110 cycles, further revealing the stable interface between the gel polymer electrolyte and the Si-VACNFs anode. These results show that the infiltrated flexible gel polymer electrolyte can effectively accommodate the stress/strain of the Si shell due to the large volume expansion/contraction during the charge-discharge processes, which is particularly useful for developing future flexible solid-state lithium-ion batteries incorporating Si-anodes.
机译:这项研究证明了凝胶聚合物电解质完全渗入了硅涂层的垂直排列的碳纳米纤维(Si-VACNFs),一种高容量的3D纳米结构阳极中,并对其电化学性能进行了电化学表征,以作为未来全固态的有效电解质/隔板状态的锂离子电池。已采用两种制造方法在凝胶聚合物电解质和Si-VACNF阳极之间形成稳定的界面。在第一种方法中,滴铸的凝胶聚合物电解质能够完全渗透到垂直排列的核-壳纳米纤维之间的开放空间中,并且将每个单独的纳米纤维封装/稳定化在聚合物基质中。 3D纳米结构Si-VACNF阳极在C / 10.5(或0.36 A g(-1))速率下显示3450 mAh g(-1)和在1C(或3.8 A g)下显示1732 mAh g(-1)的极高容量(-1))率。在第二种方法中,将预先形成的凝胶电解质膜夹在Si-VACNF电极和Li箔之间以形成半电池。 Si-VACNF阳极的大多数垂直核-壳纳米纤维都能够渗透到凝胶聚合物薄膜中,同时保持其结构完整性。已获得在C / 11速率下略低于2800 mAh g(-1)的容量,并且在C / 1.5(或2.6 A g(-1))速率下已获得类似于1070 mAh g(-1)的容量,几乎没有容量淡入淡出最多100个周期。电化学阻抗谱在110个循环后没有显示出明显的变化,进一步揭示了凝胶聚合物电解质和Si-VACNFs阳极之间的稳定界面。这些结果表明,由于充放电过程中的大体积膨胀/收缩,渗透的柔性凝胶聚合物电解质可以有效地适应硅壳的应力/应变,这对于开发未来的柔性固态锂离子特别有用。装有Si阳极的电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号