首页> 外文期刊>ACS applied materials & interfaces >Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111)
【24h】

Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111)

机译:无羟基Cu(111)上的三甲基铝和氧原子层沉积

获取原文
获取原文并翻译 | 示例
       

摘要

Atomic layer deposition (ALD) of alumina using trimethylaluminum (TMA) has technological importance in microelectronics. This process has demonstrated a high potential in applications of protective coatings on Cu surfaces for control of diffusion of Cu in Cu2S films in photovoltaic devices and sintering of Cu-based nanoparticles in liquid phase hydrogenation reactions. With this motivation in mind, the reaction between TMA and oxygen was investigated on Cu(111) and Cu2O/Cu(111) surfaces. TMA did not adsorb on the Cu(111) surface, a result consistent with density functional theory (DFT) calculations predicting that TMA adsorption and decomposition are thermodynamically unfavorable on pure Cu(111). On the other hand, TMA readily adsorbed on the Cu2O/Cu(111) surface at 473 K resulting in the reduction of some surface Cu1+ to metallic copper (Cu-0) and the formation of a copper aluminate, most likely CuAlO2. The reaction is limited by the amount of surface oxygen. After the first TMA half-cycle on Cu2O/Cu(111), two-dimensional (2D) islands of the aluminate were observed on the surface by scanning tunneling microscopy (STM). According to DFT calculations, TMA decomposed completely on Cu2O/Cu(111). High-resolution electron energy loss spectroscopy (HREELS) was used to distinguish between tetrahedrally (Al-tet) and octahedrally (Aloct) coordinated Al3+ in surface adlayers. TMA dosing produced an aluminum oxide film, which contained more octahedrally coordinated Al3+ (Al-tet/Al-oct HREELS peak area ratio approximate to 0.3) than did dosing O-2 (Al-tet/Al-oct HREELS peak area ratio approximate to 0.5). After the first ALD cycle, TMA reacted with both Cu2O and aluminum oxide surfaces in the absence of hydroxyl groups until film closure by the fourth ALD cycle. Then, TMA continued to react with surface Al-O, forming stoichiometric Al2O3. O2 half-cycles at 623 K were more effective for carbon removal than O2 half-cycles at 473 K or water half-cycles at 623 K. The growth rate was approximately 3-4 angstrom/cycle for TMA+O-2 ALD (O-2 half-cycles at 623 K). No preferential growth of Al2O3 on the steps of Cu(111) was observed. According to STM, Al2O3 grows homogeneously on Cu(111) terraces.
机译:使用三甲基铝(TMA)的氧化铝原子层沉积(ALD)在微电子学中具有技术重要性。该方法证明了在铜表面上应用保护性涂层以控制铜在光伏器件中Cu2S膜中的扩散以及液相加氢反应中Cu基纳米颗粒的烧结方面的巨大潜力。考虑到这一动机,在Cu(111)和Cu2O / Cu(111)表面上研究了TMA与氧气之间的反应。 TMA不会吸附在Cu(111)表面上,这一结果与密度泛函理论(DFT)计算相一致,该结果预测TMA在纯Cu(111)上的吸附和分解在热力学上是不利的。另一方面,TMA容易在473 K下吸附在Cu2O / Cu(111)表面上,从而导致一些表面Cu1 +还原为金属铜(Cu-0)并形成铝酸铜,最有可能是CuAlO2。反应受表面氧量的限制。在Cu2O / Cu(111)上进行第一个TMA半循环后,通过扫描隧道显微镜(STM)在表面上观察到了铝酸盐的二维(2D)岛。根据DFT计算,TMA在Cu2O / Cu(111)上完全分解。高分辨率电子能量损失谱(HREELS)用于区分表面层中四面体(Al-tet)和八面体(Aloct)配位的Al3 +。 TMA配给产生的氧化铝膜比配给O-2所含的八面体配位的Al3 +(Al-tet / Al-oct HREELS峰面积比约为0.3)更多。 0.5)。在第一个ALD循环后,TMA在不存在羟基的情况下与Cu2O和氧化铝表面反应,直到第四个ALD循环关闭膜为止。然后,TMA继续与表面Al-O反应,形成化学计量的Al2O3。在473 K的O2半循环比在473 K的O2半循环或在623 K的水半循环对除碳更有效。TMA+ O-2 ALD(O -2个半周期(623 K)。没有观察到在Cu(111)台阶上Al2O3优先生长。根据STM,Al2O3在Cu(111)阶地上均匀生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号