首页> 外文期刊>ACS applied materials & interfaces >Construction of Plasmonic Core-Satellite Nanostructures on Substrates Based on DNA-Directed Self-Assembly as a Sensitive and Reproducible Biosensor
【24h】

Construction of Plasmonic Core-Satellite Nanostructures on Substrates Based on DNA-Directed Self-Assembly as a Sensitive and Reproducible Biosensor

机译:基于DNA定向自组装作为敏感和可重现的生物传感器在基板上的等离子卫星核心纳米结构的构建。

获取原文
获取原文并翻译 | 示例
       

摘要

We report the successful construction of plasmonic core-satellite nanostructured assemblies on two-dimensional substrates, based on a strategy of combining DNA-functionalized plasmonic nanoparticles (NPs) with the specific recognition ability toward target to enable satellite NPs to self-assemble around the core immobilized on substrates. A strongly coupled plasmonic resonance band was observed because of the close proximity between core and satellite NPs, which presented significant red-shift and enhanced extinction with respect to the local surface plasmon resonance (LSPR) band of individual core NPs on the substrate. The functionality of this core satellite nanostructured assembly as a biosensor was further explored, and the changes in extinction intensity and the peak shift of the plasmonic coupling resonance band arising from the probe-target DNA binding event all proved to be useful criteria for target DNA detection. Moreover, high selectivity down to single-base mismatched DNA was achieved using this strongly coupled plasmonic core satellite nanostructured assembly on a substrate. Such substrate-based detection was advantageous, and its reusability and high cycle stability were demonstrated after five cycles of disassembly and reassembly. Our work demonstrates the biosensing capacity of this DNA-functionalized plasmonic nanoassembly model system on two-dimensional substrate, which is also applicable to the detection of numerous DNA-recognized biomolecules. Likewise, the presented construction method can be extended to fabricate other compositional core-satellite nanoassemblies.
机译:我们报告了基于结合特定目标识别能力的DNA功能化等离子纳米颗粒(NPs)的策略,在二维基底上成功构建等离子核-卫星纳米结构组装体,从而使卫星NPs能够围绕核自组装固定在基材上。观察到强耦合等离子体共振带,因为核心和卫星NP之间非常接近,相对于基板上单个核心NP的局部表面等离子体激元共振(LSPR)带,它呈现出明显的红移和增强的消光作用。进一步探索了该核心卫星纳米结构组件作为生物传感器的功能,并且消光强度的变化和由探针-靶标DNA结合事件引起的等离子体耦合共振带的峰移均被证明是靶标DNA检测的有用标准。此外,使用这种强耦合的等离激元核心卫星纳米结构组装体,可以实现低至单碱基错配DNA的高选择性。这样的基于衬底的检测是有利的,并且在五个拆卸和重新组装循环之后证明了其可重用性和高循环稳定性。我们的工作证明了这种在二维基质上具有DNA功能化的等离激元纳米组装模型系统的生物传感能力,该系统也可用于检测许多DNA识别的生物分子。同样,可以将提出的构造方法扩展到制造其他组成的核-卫星纳米组件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号