...
首页> 外文期刊>Journal of cellular biochemistry. >Molecular Dynamics Studies on the Enzalutamide Resistance Mechanisms Induced by Androgen Receptor Mutations
【24h】

Molecular Dynamics Studies on the Enzalutamide Resistance Mechanisms Induced by Androgen Receptor Mutations

机译:雄激素受体突变诱导烯醇酰胺抗性机制的分子动力学研究

获取原文
获取原文并翻译 | 示例

摘要

ABSTRACT The second‐generation antiandrogen enzalutamide, targeting androgen receptor (AR), was approved to treat castration resistant prostate cancer (CRPC) in 2012. Its resistance was observed when it was in the clinical research stage. AR mutation is the main factor of enzalutamide resistance. AR F876L and F876L_T877A mutations were reported to switch enzalutamide from AR antagonist to agonist, but W741C cannot. There are various mutations in the ligand binding domain of AR LBD, such as L701H, W741L, H874Y, T877A, and M895T, if these mutations can lead to drug resistance problem or not is not known. In this work, molecular dynamics (MD) simulations and molecular mechanics Generalized Born (GB) surface area (MM‐GBSA) calculations were employed to explore the interaction mechanisms between enzalutamide and wild‐type (WT)/mutant ARs. The simulation results indicate that helix 12 (H12), which lies on the top of the AR LBD like a cover, plays a vital role for the function of enzalutamide. When C‐ring of enzalutamide locates near to H12, the distance between enzalutamide and H12 is reduced, which prevents H12 from closing and distort the coactivator binding site, resulting in the inactivation of transcription. In this case, enzalutamide acts as an AR antagonist. However, when the C‐ring of enzalutamide is near to helix H11 or the Loop 11–12, H12 tends to close to form a coactivator binding site to facilitate transcription, enzalutamide acts as an AR agonist. Moreover, per‐residue free energy decomposition analysis indicates that M895 and I899 are key residues in the antagonist mechanism of enzalutamide. J. Cell. Biochem. 118: 2792–2801, 2017. ? 2017 Wiley Periodicals, Inc.
机译:摘要批准了第二代抗抗原烯醇酰胺,靶向雄激素受体(AR),批准在2012年治疗抗涡流前列腺癌(CRPC)。当它在临床研究阶段时,观察到其抗性。 AR突变是依齐甲酰胺抗性的主要因素。据报道AR F876L和F876L_T877A突变从AR拮抗剂切换苯甲甲酰胺,但W741C不能。如果这些突变可能导致耐药性问题,则在AR LBD的配体结合结构域中存在各种突变,例如L701H,W741L,H874Y,T877A和M895T。在这项工作中,采用分子动力学(MD)模拟和分子力学的出生(GB)表面积(MM-GBSA)计算来探讨烯醇酰胺和野生型(WT)/突变体ARS之间的相互作用机制。仿真结果表明,螺旋12(H12),其位于AR LBD的顶部,如盖子上,对苯甲甲酰胺的功能起着至关重要的作用。当烯嘧胺的C环定位在H12附近时,减少苯甲胺酰胺和H12​​之间的距离,这防止了H12闭合并扭曲了共粘膜结合位点,导致转录的失活。在这种情况下,麒麟酰胺充当Ar拮抗剂。然而,当苯甲甲酰胺的C环靠近螺旋H11或环11-12时,H12倾向于接近形成共酰胺结合位点以便于转录,烯醇酰胺作为AR激动剂作用。此外,每残留的自由能量分解分析表明M895和I899是苯甲醛拮抗剂机制中的关键残留物。 J.Cell。生物学习。 118:2792-2801,2017 2017年Wiley期刊,Inc。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号