首页> 外文期刊>Journal of Theoretical Biology >Using mathematical modeling to infer the valence state of arsenicals in tissues: A PBPK model for dimethylarsinic acid (DMA(v)) and dimethylarsinous acid (DMA(III)) in mice
【24h】

Using mathematical modeling to infer the valence state of arsenicals in tissues: A PBPK model for dimethylarsinic acid (DMA(v)) and dimethylarsinous acid (DMA(III)) in mice

机译:使用数学建模来推断组织中砷的价态:小鼠中二甲基胂酸(DMA(V))和二甲基胂酸(DMA(III))的PBPK模型

获取原文
获取原文并翻译 | 示例
           

摘要

Chronic exposure to inorganic arsenic (iAs), a contaminant of water and food supplies, is associated with many adverse health effects. A notable feature of iAs metabolism is sequential methylation reactions which produce mono- and di-methylated arsenicals that can contain arsenic in either the trivalent (Ill) or pentavalent (V) valence states. Because methylated arsenicals containing trivalent arsenic are more potent toxicants than their pentavalent counterparts, the ability to distinguish between the +3 and +5 valence states is a crucial property for physiologically based pharmacokinetic (PBPK) models of arsenicals to possess if they are to be of use in risk assessment. Unfortunately, current analytic techniques for quantifying arsenicals in tissues disrupt the valence state; hence, pharmacokinetic studies in animals, used for model calibration, only reliably provide data on the sum of the +3 and +5 valence forms of a given metabolite. In this paper we show how mathematical modeling can be used to overcome this obstacle and present a PBPK model for the dimethylated metabolite of iAs, which exists as either dimethylarsinous acid, (CH3)(2)(AsOH)-O-III (abbreviated DMA(III)) or dimethylarsinic acid, (CH3)(2)As-v(O)OH (abbreviated DMA(v)). The model distinguishes these two forms and sets a lower bound on how much of an organ's DMA burden is present in the more reactive and toxic trivalent valence state. We conjoin the PBPK model to a simple model for DMA(III)-induced oxidative stress in liver and use this extended model to predict cytotoxicity in liver in response to the high oral dose of DMA(v). The model incorporates mechanistic details derived from in vitro studies and is iteratively calibrated with lumped-valence-state PK data for intravenous or oral dosing with DMA(v). Model formulation leads us to predict that orally administered DMA v undergoes extensive reduction in the gastrointestinal (GI) tract to the more toxic trivalent DMA(III). (C) 2018 Elsevier Ltd. All rights reserved.
机译:慢性暴露于无机砷(IAS),水和食品供应的污染物,与许多不良健康影响有关。 IAS代谢的显着特征是序列甲基化反应,其产生单甲基化砷,其可以在三价(ILL)或五价(V)级态中含有砷。因为含有三价砷的甲基化砷是比其五价对应物更有效的毒性,所以区分+ 3和+ 5个价态的能力是生理基础的药代动力学(PBPK)模型的关键性,如果它们是具有砷的药代动力学(PBPK)模型在风险评估中使用。不幸的是,用于量化组织中的砷的目前的分析技术扰乱了价态;因此,用于模型校准的动物的药代动力学研究仅可靠地提供给定代谢物的+3和+5种效价形式的总和的数据。在本文中,我们展示了数学建模如何用于克服该障碍并呈现用于IAS的二甲基化代谢物的PBPK模型,其作为二甲基甲酸,(CH 3)(2)(ASOH)-O-III(缩写DMA (iii))或二甲基胂酸,(CH 3)(2)AS-V(O)OH(缩写DMA(V))。该模型区分这两种形式,并在更具反应性和有毒的三价价值稳态中存在有多少器官DMA负担的下限。我们将PBPK模型与DMA(III)诱导的氧化胁迫进行了一种简单的模型,并使用该扩展模型预测肝脏中的细胞毒性,响应于高口气剂量的DMA(V)。该模型包括源自体外研究的机械细节,并用静脉化价 - 状态PK数据迭代地校准,用于用DMA(V)静脉内或口服给药。模型配方导致我们预测口服施用的DMA V经历胃肠道(GI)的广泛降低,以至于更有毒的三价DMA(III)。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号