首页> 外文期刊>Journal of the Royal Society Interface >Optimization-based synthesis of stochastic biocircuits with statistical specifications
【24h】

Optimization-based synthesis of stochastic biocircuits with statistical specifications

机译:基于优化的统计规范的随机生物电池的合成

获取原文
获取原文并翻译 | 示例

摘要

Model-guided design has become a standard approach to engineering biomolecular circuits in synthetic biology. However, the stochastic nature of biomolecular reactions is often overlooked in the design process. As a result, cell-cell heterogeneity causes unexpected deviation of biocircuit behaviours from model predictions and requires additional iterations of design-buildtest cycles. To enhance the design process of stochastic biocircuits, this paper presents a computational framework to systematically specify the level of intrinsic noise usingwell-definedmetrics of statistics and design highly heterogeneous biocircuits based on the specifications. Specifically, we use descriptive statistics of population distributions as an intuitive specification language of stochastic biocircuits and develop an optimization-based computational tool that explores parameter configurations satisfying design requirements. Sensitivity analysis methods are also performed to ensure the robustness of a biocircuit design against extrinsic perturbations. These design tools are formulated with convex optimization programs to enable rigorous and efficient quantification of the statistics. We demonstrate these features by designing a stochastic negative feedback biocircuit that satisfies multiple statistical constraints and perform an in-depth study of noise propagation and regulation in negative feedback pathways.
机译:模型引导设计已成为合成生物学中的工程生物分子电路的标准方法。然而,生物分子反应的随机性质通常忽略了设计过程中。结果,细胞 - 细胞异质性引起模型预测的生物电路行为的意外偏差,并且需要额外的设计 - 构建循环迭代。为了增强随机生物电源的设计过程,本文提出了一种计算框架,以系统地指定了统计统计数据的内在噪声水平,并根据规格设计高度异构的生物电路。具体地,我们使用人口分布的描述性统计作为随机生物电路的直观规范语言,并开发了一种基于优化的计算工具,探讨了满足设计要求的参数配置。还进行敏感性分析方法,以确保生物电路设计对外在扰动的鲁棒性。这些设计工具与凸优化程序配制,以实现统计数据的严格和有效量化。我们通过设计满足多种统计约束的随机负反馈生物电路来展示这些特征,并对负反馈途径的噪声传播和调节进行深入研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号