...
首页> 外文期刊>Journal of the Optical Society of America, B. Optical Physics >VO2-hBN-graphene-based bi-functional metamaterial for mid-infrared bi-tunable asymmetric transmission and nearly perfect resonant absorption
【24h】

VO2-hBN-graphene-based bi-functional metamaterial for mid-infrared bi-tunable asymmetric transmission and nearly perfect resonant absorption

机译:基于VO2-HBN-石墨烯的双功能超材料,用于中红外双可调谐不对称变速器和几乎完美的共振吸收

获取原文
获取原文并翻译 | 示例
           

摘要

Bi-tunable asymmetric light transmission (AT) and nearly perfect resonant absorption functionalities are achieved by a Lorentz-reciprocal metamaterial for the operation at the mid-infrared (MIR) wavelengths and transverse magnetic polarization. The bi-tunable metamaterial with bi-functional features and a total thickness of 1.8 mu m is based on an hBN/graphene/hBN heterostructure that is bounded by a Ge grating on the upper side and a hybrid VO2/Au grating on the lower side. Through analytical calculations, we first investigate how the dispersion characteristics of the high-beta hyperbolic phonon polaritons of hBN can be controlled and hybridized through the insulator (i-VO2) to metal (m-VO2) transition of VO2 in a bare hBN/VO2 heterostructure. Then, at the absence of graphene and owing to the support of the hybridized high-beta modes, a broad and efficient AT with forward-to-backward contrast exceeding 40% is obtained by numerical calculations for the i-VO2 case, as the first functionality of the structure. Moreover, it is found that for the m-VO2 case, the device is no longer transmittive and a nearly perfect resonant absorption response, as the second functionality, is observed for backward illumination. Finally, by introducing multilayer graphene into the structure and considering the intermediate states of VO2 in the calculations, the bi-tunable transmission and absorption characteristics of the device are investigated. We believe the designed metamaterial is well-suited for MIR optical diodes, sensors, and thermal emitters. (c) 2019 Optical Society of America
机译:通过在中红外(MIR)波长和横向磁极中的操作的Lorentz-互换超材料实现双可调谐不对称光传输(AT)和几乎完美的谐振吸收功能。具有双功能特征的双可调谐超材料和1.8μm的总厚度基于HBN / Graphene / HBN异质结构,该HBN /石墨烯/ HBN异质结构由上侧的GE光栅和下侧的混合VO2 / Au光栅有界限。通过分析计算,首先研究如何通过绝缘体(I-VO2)控制和杂交HBN的高β双曲声子极化子的分散特性,以在裸HBN / VO2中通过VO2的金属(M-VO2)转变为金属(M-VO2)转变异质结构。然后,在没有石墨烯的情况下,由于杂交的高β模式的支持,通过I-VO2案例的数值计算来获得超过40%的前后对比度的宽和高效,作为第一结构的功能。此外,发现对于M-VO2情况,该装置不再透射,并且观察到作为第二函数的几乎完美的谐振吸收响应,以便向后照明。最后,通过将多层石墨烯引入结构并考虑到计算中的VO2中间状态,研究了装置的双可调谐透射和吸收特性。我们认为设计的超材料非常适合MIR光学二极管,传感器和热发射器。 (c)2019年光学学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号