...
首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Probing multi-scale mechanics of peripheral nerve collagen and myelin by X-ray diffraction
【24h】

Probing multi-scale mechanics of peripheral nerve collagen and myelin by X-ray diffraction

机译:X射线衍射探测外周神经胶原蛋白和髓鞘的多尺度力学

获取原文
获取原文并翻译 | 示例

摘要

Peripheral nerves are continuously subjected to mechanical forces, both during everyday movement and as a result of traumatic events. Current mechanical models focus on explaining the macroscopic behaviour of the tissue, but do not investigate how tissue strain translates to deformations at the microstructural level. Predicting the effect of macro-scale loading can help explain changes in nerve function and suggest new strategies for prevention and therapy.The aim of this study was to determine the relationship between macroscopic tensile loading and micro scale deformation in structures thought to be mechanically active in peripheral nerves: the myelin sheath enveloping axons, and axially aligned epineurial collagen fibrils. The microstructure was probed using X-ray diffraction duringin situtensile loading, measuring the micro-scale deformation in collagen and myelin, combined with high definition macroscopic video extensiometry.At a tissue level, tensile loading elongates nerves axially, whilst simultaneously compressing circumferentially. The non-linear behaviour observed in both directions is evidence, circumferentially, that the nerve core components have the ability to rearrange before bearing load and axially, of a recruitment process in epineurial collagen. At the molecular level, axially aligned epineurial collagen fibrils are strained, whilst the myelin sheath enveloping axons is compressed circumferentially. During induced compression, the myelin sheath shows high circumferential stiffness, indicating a possible role in mechanical protection of axons. The myelin sheath is deformed from low loads, despite the non-linearity of whole tissue compression, indicating more than one mechanism contributing to myelin compression. Epineurial collagen shows similar load-bearing characteristics to those of other collagenous connective tissues.This new microstructural knowledge is key to understand peripheral nerve mechanical behaviour, and will support new regenerative strategies for traumatic and repetitive injury.
机译:在日常运动期间,外周神经在日常运动中连续进行机械力,并且由于创伤事件。目前的机械模型专注于解释组织的宏观行为,但不研究组织应变如何转化为微观结构水平的变形。预测宏观尺度负荷的效果可以帮助解释神经功能的变化,并建议预防和治疗的新策略。本研究的目的是确定宏观拉伸负荷和微尺度变形之间的关系,认为结构中的思想中的思想中的思想中的关系外周神经:髓鞘包络轴承,轴向对齐的内膜胶原原纤维。使用X射线衍射探测微观结构在高压率负载期间,测量胶原蛋白和髓鞘中的微观变形,结合高清晰度宏观视频延伸测量。组织水平,旋转载荷轴向伸长神经,同时沿周向。在两个方向上观察到的非线性行为是圆周的证据,即神经核心成分具有在轴承载荷和轴向之前重新排列的能力,在内膜胶原中的募集过程中的募集过程。在分子水平下,应变轴向对齐的内膜胶原型原纤维,而髓鞘包封轴突沿周向压缩。在诱导压缩期间,髓鞘显示出高周向刚度,表明轴突的机械保护中的可能作用。尽管整个组织压缩的非线性,但肌蛋白鞘的变形是从低负荷变形,表明多于一种有助于髓鞘压缩的机制。髁癌胶原蛋白显示出与其他胶原结缔组织的携带相似的承载特性。这种新的微观结构知识是了解外周神经力学行为的关键,并将支持新的创伤性和重复损伤的再生策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号