首页> 外文期刊>Journal of the Australian Mathematical Society >ON p-GROUPS WITH AUTOMORPHISM GROUPS RELATED TO THE CHEVALLEY GROUP G(2)(p)
【24h】

ON p-GROUPS WITH AUTOMORPHISM GROUPS RELATED TO THE CHEVALLEY GROUP G(2)(p)

机译:关于与Chevalley Group G(2)(P)相关的自动形态群体的P组

获取原文
获取原文并翻译 | 示例

摘要

Let p be an odd prime. We construct a p-group P of nilpotency class two, rank seven and exponent p, such that Aut(P) induces N-GL(7;p)(G2(p)) = Z(GL(7; p))G2(p) on the Frattini quotient P=Phi(P). The constructed group P is the smallest p-group with these properties, having order p(14), and when p = 3 our construction gives two nonisomorphic p-groups. To show that P satisfies the specified properties, we study the action of G(2)(q) on the octonion algebra over F-q, for each power q of p, and explore the reducibility of the exterior square of each irreducible seven-dimensional F-q[G2(q)]-module.
机译:让P成为一个奇怪的素数。 我们构建了尼洛比等级的p组p,镇定七和指数p,使得aut(p)诱导n-gl(7; p)(g2(p))= z(gl(7; p))g2 (p)在Frattini quilit p = phi(p)上。 构建的组p是具有这些性质的最小p群,具有P(14),当P = 3我们的结构提供两个非异形P族。 为了表明p满足指定的属性,我们研究了P的每个功率Q的octonion代数在octonion代数上的动作,并探讨了每个不可缩短的七维FQ的外部平方的还原性 [G2(Q)] - 模块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号