...
首页> 外文期刊>Journal of solid state electrochemistry >Morphological and structural evolution of Si-Cu nanocomposites by an instantaneous vapor-liquid-solid growth and the electrochemical lithiation/delithiation performances
【24h】

Morphological and structural evolution of Si-Cu nanocomposites by an instantaneous vapor-liquid-solid growth and the electrochemical lithiation/delithiation performances

机译:通过瞬时气相 - 固体生长和电化学锂锂化/脱发性能的Si-Cu纳米复合材料的形态学和结构演化

获取原文
获取原文并翻译 | 示例
           

摘要

Polymorphic Si-Cu nanocomposites of Si@Cu3Si nanowires, Si@Cu3Si nanorods, and Si@Cu3Si(Cu) nanocapsules are synthesized via the high-energy arc-discharge plasma. Electrochemical performances of these materials as anodes for lithium-ion batteries are also investigated. It is found that the morphologies and structures of above Si-Cu nanocomposites are alterable by the composition of the raw target and synthetic conditions. Optical emission spectroscopy is adopted to reveal the energetic states of excited atoms in plasma; thus, the temperature of working plasma as well as the evaporation rate of each element can be evaluated, in which both favor to control the composition of Si-Cu nanopowder product and the aborative nanostructures. Formation of multifarious Si-Cu nanostructures is understood from the in situ nucleation and anisotropic growth processes, induced by an instantaneous vapor-liquid-solid mechanism within the robust plasma. The optimal composition and microstructure of Si@Cu3Si nanorods are found for the excellent electrochemical behaviors, typically a stable discharge capacity of 783mAhg(-1) with the coulombic efficiency of 98.51% at 100mAg(-1) after 100 cycles. Good performances are attributed to one-dimensional Si-Cu nanostructure, which favors to promote Li+ ion diffusion. Metallic Cu component released from Cu3Si precursor enhances the conductivity, buffers the volume change, and facilitates the stabilization in cycling.
机译:通过高能电弧放电等离子体合成Si @ Cu3Si纳米线,Si / Cu3Si纳米码和Si @ Cu3Si(Cu)纳米封装的多晶型Si-Cu纳米复合材料。还研究了这些材料的电化学性能作为用于锂离子电池的阳极。结果发现,上述Si-Cu纳米复合材料的形态和结构可通过原始靶标和合成条件的组成而可改变。采用光发射光谱揭示血浆中兴奋原子的能量状态;因此,可以评估工作等离子体的温度以及每个元素的蒸发速率,其中有利于控制Si-Cu纳米粉末产品的组成和匿名纳米结构。从原位成核和各向异性生长过程中理解多花Si-Cu纳米结构的形成,通过稳健的血浆内的瞬时气相 - 固体机制诱导。发现Si @ Cu3Si纳米棒的最佳组成和微观结构用于优异的电化学行为,通常在100次循环后100mAg(-1)的库仑效率为783mAhg(-1)的稳定放电容量为98.51%。良好的性能归因于一维Si-Cu纳米结构,其利用促进Li +离子扩散。从Cu3Si前体释放的金属Cu组分提高了电导率,缓冲体积变化,并促进循环中的稳定性。

著录项

  • 来源
  • 作者单位

    Dalian Univ Technol Sch Mat Sci &

    Engn Minist Educ Key Lab Mat Modificat Laser Ion &

    Electron Beams Dalian 116023 Peoples R China;

    Dalian Univ Technol Sch Mat Sci &

    Engn Minist Educ Key Lab Mat Modificat Laser Ion &

    Electron Beams Dalian 116023 Peoples R China;

    Dalian Univ Technol Sch Mat Sci &

    Engn Minist Educ Key Lab Mat Modificat Laser Ion &

    Electron Beams Dalian 116023 Peoples R China;

    Dalian Univ Technol Sch Mat Sci &

    Engn Minist Educ Key Lab Mat Modificat Laser Ion &

    Electron Beams Dalian 116023 Peoples R China;

    Dalian Univ Technol Sch Mat Sci &

    Engn Minist Educ Key Lab Mat Modificat Laser Ion &

    Electron Beams Dalian 116023 Peoples R China;

    Dalian Univ Technol Sch Mat Sci &

    Engn Minist Educ Key Lab Mat Modificat Laser Ion &

    Electron Beams Dalian 116023 Peoples R China;

    Dalian Univ Technol Sch Mat Sci &

    Engn Minist Educ Key Lab Mat Modificat Laser Ion &

    Electron Beams Dalian 116023 Peoples R China;

    Dalian Univ Technol Sch Mat Sci &

    Engn Minist Educ Key Lab Mat Modificat Laser Ion &

    Electron Beams Dalian 116023 Peoples R China;

    Kumoh Natl Inst Technol Dept Mech Engn Daeharkro 53 Gumi 730701 Gyeong Buk South Korea;

    Dalian Univ Technol Sch Mat Sci &

    Engn Minist Educ Key Lab Mat Modificat Laser Ion &

    Electron Beams Dalian 116023 Peoples R China;

    Univ Washington Dept Mat Sci &

    Engn Seattle WA 98195 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 电化学、电解、磁化学;
  • 关键词

    Polymorphic; Si-Cu nanocomposite; Arc-discharge plasma; Anode; Lithium-ion battery;

    机译:多晶型;Si-Cu纳米复合材料;电弧放电等离子体;阳极;锂离子电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号