...
首页> 外文期刊>Biotechnology and Bioengineering >Metabolic flux model for an anchorage-dependent MDCK cell line: Characteristic growth phases and minimum substrate consumption flux distribution
【24h】

Metabolic flux model for an anchorage-dependent MDCK cell line: Characteristic growth phases and minimum substrate consumption flux distribution

机译:锚固依赖性MDCK细胞系的代谢通量模型:特征生长阶段和最小底物消耗通量分布

获取原文
获取原文并翻译 | 示例

摘要

Up to now cell-culture based vaccine production processes only reach low productivities. The reasons are: (i) slow cell growth and (ii) low cell concentrations. To address these shortcomings, a quantitative analysis of the process conditions, especially the cell growth and the metabolic capabilities of the host cell line is required. For this purpose a MDCK cell based influenza vaccine production process was investigated. With a segregated growth model four distinct cell growth phases are distinguished in the batch process. In the first phase the cells attach to the surface of the microcarriers and show low metabolic activity. The second phase is characterized by exponential cell growth. In the third phase, preceded by a change in oxygen consumption, contact inhibition leads to a decrease in cell growth. Finally, the last phase before infection shows no further increase in cell numbers. To gain insight into the metabolic activity during these phases, a detailed metabolic model of MDCK cell was developed based on genome information and experimental analysis. The MDCK model was also used to calculate a theoretical flux distribution representing an optimized cell that only consumes a minimum of carbon sources. Comparing this minimum substrate consumption flux distribution to the fluxes estimated from experiments unveiled high overflow metabolism under the applied process conditions. Biotechnol. Bioeng. 2008;101: 135-152. (C) 2008 Wiley Periodicals, Inc.
机译:到目前为止,基于细胞培养的疫苗生产过程只能达到较低的生产率。原因是:(i)细胞生长缓慢和(ii)细胞浓度低。为了解决这些缺点,需要对过程条件进行定量分析,尤其是宿主细胞系的细胞生长和代谢能力。为此,研究了基于MDCK细胞的流感疫苗的生产过程。使用隔离的生长模型,在批处理过程中可以区分四个不同的细胞生长阶段。在第一阶段中,细胞附着于微载体的表面并显示出低的代谢活性。第二阶段以指数细胞生长为特征。在第三阶段,在氧气消耗发生变化之前,接触抑制导致细胞生长下降。最后,感染前的最后一个阶段显示细胞数量没有进一步增加。为了深入了解这些阶段的代谢活性,基于基因组信息和实验分析开发了详细的MDCK细胞代谢模型。 MDCK模型也用于计算理论通量分布,代表了仅消耗最少碳源的优化电池。将这种最小的底物消耗通量分布与通过实验估算的通量进行比较,发现在所应用的工艺条件下高溢流代谢。生物技术。生恩2008; 101:135-152。 (C)2008 Wiley期刊公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号