首页> 外文期刊>Journal of Micromechanics and Microengineering >Micro ultrasonic machining hemispherical mold for MEMS resonator gyroscope using a novel ultraprecise ceramic entire-ball tool
【24h】

Micro ultrasonic machining hemispherical mold for MEMS resonator gyroscope using a novel ultraprecise ceramic entire-ball tool

机译:MEMS谐振器陀螺使用新型超纯陶瓷全球工具的微型超声波加工半球形模具

获取原文
获取原文并翻译 | 示例
           

摘要

The manufacture of inertial-grade and tactical-grade diamond micro electro mechanical systems (MEMS) hemispherical resonator gyroscopes is limited by the manufacturing accuracy of the monocrystalline silicon hemispherical concave mold, on which the gyroscope shell is formed. To solve this problem, this paper presents a new method for micro-ultrasonic machining of microhemispherical molds for resonator gyroscopes using an ultraprecise ceramic entire-ball tool (UCET). To study the wear mechanism of the UCET and the influence of tool wear on the surface integrity and form accuracy of the microhemispherical mold, a mathematical model for the tool wear of micro-ultrasonic machining of microhemispherical molds with UCET is established and verified by experiments. The micro-ultrasonic amplitude, the abrasive material and the abrasive size is found to have significant influences on the tool wear of the UCET. The wear rates of tungsten carbide and silicon nitride ceramic tools are 2.22% and 3.64%, respectively, which are far less than the wear rate of 8.03% of bearing steel. The wear condition agrees with the theoretical model. The machining experiment shows that the radius change, Delta R, is 6.47 mu m of the microhemispherical mold processed by UCET, which is much better than 32 mu m of the micromold processed by micro-electro discharge machining at one time. After 10 continuous machining runs, the deviation rate of the form accuracy of the micromold is 1.71%, 3.71% and 24.21%, due to the wear of tungsten carbide, silicon nitride and bearing steel, respectively. It can be seen that micro-ultrasonic machining of microhemispherical molds using UCET has the characteristics of a high initial form accuracy, low wear rate, high integrity and form accuracy. This is a potentially effective method to obtain micromolds with high accuracy and surface integrity.
机译:惯性级和战术级金刚石微电器机械系统(MEMS)半球形谐振器陀螺仪的制造受到单晶硅半球形凹模的制造精度的限制,在其上形成陀螺壳壳。为了解决这个问题,本文介绍了一种新的超声波加工方法,用于使用超挑陶瓷整体 - 球工具(UCET)谐振器陀螺微小主体模具的微型超声波加工方法。为了研究UCET的磨损机制和工具磨损对微小球形模具的表面完整性和形式精度的影响,建立并通过实验验证了微血管型微小超声波加工刀具磨损的数学模型。发现微型超声幅度,磨料材料和磨料尺寸对UCET的工具磨损产生显着影响。碳化钨和氮化硅陶瓷工具的磨损率分别为2.22%和3.64%,远小于轴承钢的8.03%的磨损率。磨损条件与理论模型同意。加工实验表明,半径变化,Delta R是由UCET加工的微血管球模具的6.47μm,这在一次微电路电加工中由微电子加工加工32μm。经过10个连续加工运行,由于碳化钨,氮化硅和轴承钢的磨损,微胶体的形式精度的偏差率为1.71%,3.71%和24.21%。可以看出,使用UCET微血管球体模具的微型超声波加工具有高初始形式精度,低磨损率,高完整性和形式精度的特点。这是一种具有高精度和表面完整性的微胶质的潜在有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号