首页> 外文期刊>Journal of Materials Engineering and Performance >Effect of Plane Strain Compression and Subsequent Recrystallization Annealing on Microstructures and Phase Transformation of NiTiFe Shape Memory Alloy
【24h】

Effect of Plane Strain Compression and Subsequent Recrystallization Annealing on Microstructures and Phase Transformation of NiTiFe Shape Memory Alloy

机译:平面应变压缩和随后的重结晶退火对Nitife形状记忆合金的微结构和相变的影响

获取原文
获取原文并翻译 | 示例

摘要

The effect of plane strain compression and subsequent recrystallization annealing on microstructures and phase transformation of NiTiFe shape memory alloy (SMA) is investigated. Inhomogeneous plastic deformation at various deformation degrees occurs in NiTiFe SMA during plane strain compression. Nanocrystalline phase and amorphous phase increase as the deformation degree increases. B2 austenite, B19′ martensite, nanocrystalline and amorphous phases coexist in the NiTiFe samples subjected to large plastic strain. The static recrystallization mechanisms depend on the microstructures of the deformed NiTiFe samples. The static recrystallization mechanisms deal with nucleation and growth of the recrystallized grains, growth of nanocrystalline phase and crystallization of amorphous phase. Grain size, subgrain boundaries, geometrically necessary dislocation density and Schmid factor are captured on the basis of electron backscattered diffraction data. The process of recrystallization annealing cannot eliminate the deformation texture completely. The slip direction [110] is the most favorable slip direction in the recrystallized NiTiFe sample. Plane strain compression along with subsequent recrystallization annealing changes the phase transformation path of as-rolled NiTiFe SMA, and it results in the decreasing martensite transformation start temperature. The three annealed NiTiFe samples exhibit the similar phase transformation behavior since complete recrystallization annealing leads to the similar microstructures.
机译:研究了研究平面应变压缩和随后的重结晶退火对Nitife形状记忆合金(SMA)的微结构和相变的影响。在平面应变压缩期间,各种变形度的不均匀塑性变形发生在NitiGe SMA中。随着变形度的增加,纳米晶相和非晶相增加。 B2奥氏体,B19'马氏体,纳米晶体和非晶阶段在经受大型塑性菌株的NitiGe样本中共存。静态再结晶机制取决于变形的Nitife样本的微观结构。静态重结晶机制处理重结晶晶粒的成核和生长,纳米晶相的生长和无定形相结晶。基于电子反向散射数据捕获晶粒尺寸,粒状边界,几何必要位错密度和施密因子。重结晶退火的方法不能完全消除变形纹理。滑动方向[110]是重结晶的Nitife样品中最有利的滑动方向。平面应变压缩以及随后的再结晶退火改变了卷起的NitiGe SMA的相变路径,结果导致马氏体转化开始温度降低。三个退火的NitiGe样品表现出类似的相变行为,因为完全重结晶退火导致类似的微观结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号