首页> 外文期刊>Journal of medical systems >Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals
【24h】

Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals

机译:使用EEG信号使用深度表示和序列学习的自动抑郁检测

获取原文
获取原文并翻译 | 示例

摘要

Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression usingEEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thusaid the psychiatrists.
机译:抑郁症今天对世界各地的大量人民影响着,它被视为全球问题。它是一种可以使用脑电图(EEG)信号来检测的情绪障碍。通过分析EEG信号的手动检测抑郁症需要大量的经验,繁琐且耗时。因此,使用EEG信号开发的全自动凹陷诊断系统将有助于临床医生。因此,我们提出了一种使用卷积神经网络(CNN)和长短期存储器(LSTM)架构开发的深杂种模型来检测使用ieg信号的凹陷。在深度模型中,通过CNN层学习信号的时间特性,并且通过LSTM层提供序列学习过程。在这项工作中,我们使用了从大脑的左右半球获得的EEG信号。我们的工作分别为右半球和左半球eEG信号提供了99.12%和97.66%的分类精度。因此,我们可以得出结论,开发的CNN-LSTM模型是使用EEG信号检测凹陷的准确性和快速。它可以在医院的精神科病房中雇用,以便准确地使用脑电图信号来检测抑郁症。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号