...
首页> 外文期刊>Journal of manufacturing science and engineering: Transactions of the ASME >Parametric Topology Optimization Toward Rational Design and Efficient Prefabrication for Additive Manufacturing
【24h】

Parametric Topology Optimization Toward Rational Design and Efficient Prefabrication for Additive Manufacturing

机译:参数拓扑优化对合理设计和高效预制的添加剂制造

获取原文
获取原文并翻译 | 示例
           

摘要

The significant advance in the boosted fabrication speed and printing resolution of additive manufacturing (AM) technology has considerably increased the capability of achieving product designs with high geometric complexity and provided tremendous potential for mass customization. However, it is also because of geometric complexity and large quantity of mass-customized products that the prefabrication (layer slicing, path planning, and support generation) is becoming the bottleneck of the AM process due to the ever-increasing computational cost. In this paper, the authors devise an integrated computational framework by synthesizing the parametric level set-based topology optimization method with the stereolithography (SLA)-based AM process for intelligent design and manufacturing of multiscale structures. The topology of the design is optimized with a distance-regularized parametric level set method considering the prefabrication computation. With the proposed framework, the structural topology optimization not only can create single material structure designs but also can generate multiscale, multimaterial structures, offering the flexibility and robustness of the structural design that the conventional methods could not provide. The output of the framework is a set of mask images that can be directly used in the AM process. The proposed approach seamlessly integrates the rational design and manufacturing to reduce the numerical complexity of the computationally expensive prefabrication process. More specifically, the prefabrication-friendly design and optimization procedure are devised to drastically eliminate the redundant computations in the traditional framework. Two test examples, including a free-form 3D cantilever beam and a multiscale meta-structure, are utilized to demonstrate the performance of the proposed approach. Both the simulation and experimental results verified that the new rational design could significantly reduce the prefabrication computation cost without affecting the original design intent or sacrificing the original functionality.
机译:增强制造速度和添加剂制造(AM)技术的打印分辨率的显着提前显着提高了具有高几何复杂性的产品设计的能力,并提供了大规模定制的巨大潜力。然而,它也是由于预制(层切片,路径规划和支持生成)成为AM过程的瓶颈,也是由于几何复杂性和大量的质量定制产品,这是由于增加的计算成本,成为AM过程的瓶颈。在本文中,作者通过将参数水平集基的拓扑优化方法合成了基于立体光刻(SLA)的智能设计和制造多尺度结构的工艺来设计集成计算框架。考虑预制计算的距离正则化参数级别设置方法优化了设计的拓扑。通过提出的框架,结构拓扑优化不仅可以创建单一材料结构设计,还可以产生多尺度,多电影结构,提供传统方法无法提供的结构设计的灵活性和鲁棒性。框架的输出是一组可以直接在AM过程中使用的掩模图像。所提出的方法无缝地集成了理性设计和制造,以降低计算昂贵的预制过程的数值复杂性。更具体地说,设计了预制友好的设计和优化过程,以急剧地消除传统框架中的冗余计算。包括自由形式3D悬臂梁和多尺度元结构的两个测试示例来证明所提出的方法的性能。模拟和实验结果验证了新的合理设计可以显着降低预制计算成本,而不会影响原始设计意图或牺牲原始功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号