首页> 外文期刊>Journal of hydrometeorology >The Impact of Spatial Resolution, Land Use, and Spinup Time on Resolving Spatial Precipitation Patterns in the Himalayas
【24h】

The Impact of Spatial Resolution, Land Use, and Spinup Time on Resolving Spatial Precipitation Patterns in the Himalayas

机译:空间分辨率,土地利用和旋转时间对定喜山区空间降水模式的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Frequently used gridded meteorological datasets poorly represent precipitation in the Himalayas because of their relatively low spatial resolution and the associated representation of the complex topography. Dynamical downscaling using high-resolution atmospheric models may improve the accuracy and quality of the precipitation fields. However, most physical parameterization schemes are designed for a spatial resolution coarser than 1 km. In this study the Weather Research and Forecasting (WRF) Model is used to determine which resolution is required to most accurately simulate monsoon and winter precipitation, 2-m temperature, and wind fields in the Nepalese Himalayas. Four model nests are set up with spatial resolutions of 25, 5, 1, and 0.5 km, respectively, and a typical 10-day period in summer and winter in 2014 are simulated. The model output is compared with observational data obtained from automatic weather stations, pluviometers, and tipping buckets in the Langtang catchment. Results show that, despite issues with the quality of the observational data due to undercatch of snowfall, the highest resolution of 500 m does provide the best match with the observations and gives the most plausible spatial distribution of precipitation. The quality of the wind and temperature fields is also improved, whereby the cold temperature bias is decreased. Our results further elucidate the performance of WRF at high resolution and demonstrate the importance of accurate surface boundary conditions and spinup time for simulating precipitation. Furthermore, they suggest that future modeling studies of High Mountain Asia should consider a subkilometer grid for accurately estimating local meteorological variability.
机译:由于它们相对较低的空间分辨率和复杂地形的相关表示,常用的网格气象数据集在喜马拉雅山中沉淀不足。使用高分辨率大气模型的动态缩小可以提高降水场的准确性和质量。但是,大多数物理参数化方案都设计用于比1公里更粗糙的空间分辨率。在这项研究中,天气研究和预测(WRF)模型用于确定最精确地模拟季风和冬季降水,2米温度和风田在尼泊尔喜马拉雅山脉中的哪些分辨率。四个型号嵌套分别设立了25,5,1和0.5公里的空间分辨率,模拟了2014年夏季和冬季典型的10天。将模型输出与从自动气象站,Pluviometers和Langtang集水区内获得的观察数据进行比较。结果表明,尽管由于降雪稳定的观测数据质量存在问题,但500米的最高分辨率确实提供了与观察结果最佳匹配,并提供了最合理的降水空间分布。风和温度场的质量也得到改善,从而降低了寒冷的温度偏差。我们的结果进一步阐明了高分辨率的WRF的性能,并证明了精确表面边界条件和模拟沉淀的旋转时间的重要性。此外,他们建议高山亚洲的未来建模研究应考虑用于准确估算局部气象变异性的假磁仪网格。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号