首页> 外文期刊>Journal of Fluids and Structures >A fluid-structure interaction solver for the study on a passively deformed fish fin with non-uniformly distributed stiffness
【24h】

A fluid-structure interaction solver for the study on a passively deformed fish fin with non-uniformly distributed stiffness

机译:一种流体结构相互作用求解器,用于具有非均匀分布刚度的被动变形鱼翅的研究

获取原文
获取原文并翻译 | 示例
           

摘要

Research on fish locomotion has made extensive progress towards a better understanding of how fish control their flexible body and fin for propulsion and maneuvering. Although the biologically flexible fish fins are believed to be one of the most important features to achieve optimal swimming performance, due to the limitations of the existing numerical modeling tool, studies on a deformable fin with a non-uniformly distributed stiffness are rare. In this work, we present a fully coupled fluid-structure interaction solver which can cope with the dynamic interplay between flexible aquatic animal and the ambient medium. In this tool, the fluid is resolved by solving Navier-Stokes equations based on the finite volume method with a multi-block grid system. The solid dynamics is solved by a nonlinear finite element method. A sophisticated improved IQN-ILS coupling algorithm is employed to stabilize solution and accelerate convergence. To demonstrate the capability of the developed FluidStructure-Interaction solver, we investigated the effect of five different stiffness distributions on the propulsive performance of a caudal peduncle-fin model. It is shown that with a non-uniformly distributed stiffness along the surface of the caudal fin, we are able to replicate similar real fish fin deformation. Consistent with the experimental observations, our numerical results also indicate that the fin with a cupping stiffness profile generates the largest thrust and efficiency whereas a heterocercal flexible fin yields the least propulsion performance but has the best maneuverability. (C) 2019 Elsevier Ltd. All rights reserved.
机译:对鱼类机器的研究取得了广泛的进展,以更好地了解鱼类如何控制其灵活的身体和鳍来推进和操纵。尽管生物柔性鱼鳍被认为是实现最佳游泳性能的最重要特征之一,但由于现有数值建模工具的局限性,具有非均匀分布刚度的可变形翅片的研究是罕见的。在这项工作中,我们介绍了一种完全耦合的流体结构相互作用求解器,可以应对柔性水生动物和环境介质之间的动态相互作用。在该工具中,通过基于具有多块网格系统的有限体积方法来解决Navier-Stokes方程来解决流体。通过非线性有限元方法解决了固体动力学。采用复杂的改进的IQN-ILS耦合算法来稳定溶液并加速收敛。为了证明所开发的流体结构 - 交互求解器的能力,我们研究了五种不同刚度分布对尾部花梗翅片模型的推进性能的影响。结果表明,沿尾部表面的不均匀分布刚度,我们能够复制类似的真实鱼鳍变形。与实验观察一致,我们的数值结果还表明,具有拔罐刚度型材的翅片产生最大的推力和效率,而异种柔性翅片产生最小的推进性能,但具有最佳的机动性。 (c)2019年elestvier有限公司保留所有权利。

著录项

  • 来源
    《Journal of Fluids and Structures》 |2020年第2020期|共24页
  • 作者单位

    Univ Strathclyde Dept Naval Architecture Ocean &

    Marine Engn Glasgow G4 0LZ Lanark Scotland;

    Univ Strathclyde Dept Naval Architecture Ocean &

    Marine Engn Glasgow G4 0LZ Lanark Scotland;

    Univ Strathclyde Dept Naval Architecture Ocean &

    Marine Engn Glasgow G4 0LZ Lanark Scotland;

    Beihang Univ Sch Mech Engn &

    Automat Beijing 100191 Peoples R China;

    Tsinghua Univ Grad Sch Shenzhen Div Ocean Sci &

    Technol Shenzhen 518055 Peoples R China;

    Northwestern Polytech Univ Sch Marine Sci &

    Technol Xian 710072 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号