首页> 外文学位 >Implicit-Explicit Time stepping for a Two-Dimensional Inviscid Fluid-Structure Interaction Solver.
【24h】

Implicit-Explicit Time stepping for a Two-Dimensional Inviscid Fluid-Structure Interaction Solver.

机译:二维无粘性流固耦合求解器的隐式-显式时间步长。

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes the development of a two-dimensional, high-order, fluid-structure interaction (FSI) solver. The well-established spectral difference (SD) method is used for spatial discretization of the Euler equations over deforming, unstructured quadrilateral grids. The Geometric Conservation Law (GCL) is incorporated into the conservative Euler equations, before discretization. After simplification, the equations reduce to a form, in the computational domain, identical to the equations in the physical domain. In this form, the equations can be integrated implicitly in time, without the requirement of any additional source term, to guarantee free-stream preservation. The fluid and structure sub-systems are individually integrated in time using the explicit first stage, single diagonal, diagonally implicit Runge-Kutta (ESDIRK) method. As the first step to solving the coupled, non-linear Euler equations, implicit in time, we linearize the governing equations. The resulting linearized simultaneous equations are then solved sequentially using lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation sweeps. The fluid and structure sub-systems are loosely coupled and the coupling term is integrated in time using an explicit RK method, resulting in an implicit-explicit (IMEX) RK coupling. The spatial accuracy and the free-stream preserving ability of the solver are demonstrated by testing a supersonic, isentropic vortex in a curved channel. Next, the temporal accuracy of the solver is established using an Euler vortex propagation test case. It is also demonstrated that the four-stage ESDIRK is capable of handling time-steps 50 times larger than the four-stage explicit RK. In each of these cases, third- and fourth-order SD for spatial discretization and second-order backward difference (BDF2) and third-order, four stage ESDIRK for time integration were tested. Since the loose (explicit) FSI coupling restricts permissible structural deformation, we limit ourselves to small harmonic oscillations resulting from linearized perturbed Euler equations. The interaction between a linear piston and an inviscid, compressible fluid is simulated to demonstrate that the IMEX coupling does not contaminate the spatial or temporal accuracy of the implemented high-order methods. Through rigorous testing, this development is expected to lay a foundation for a powerful computational framework for various fluid-structure interaction problems.
机译:本文描述了二维高阶流固耦合(FSI)求解器的开发。公认的光谱差(SD)方法用于在变形的非结构化四边形网格上对Euler方程进行空间离散。在离散化之前,将几何守恒律(GCL)合并到保守的Euler方程中。简化后,这些方程在计算域中简化为与物理域中的方程相同的形式。通过这种形式,方程式可以在时间上隐式集成,而无需任何其他源项,以确保自由流的保存。流体和结构子系统使用显式的第一阶段,单个对角线,对角线隐式Runge-Kutta(ESDIRK)方法在时间上进行单独集成。解决时间隐含的耦合非线性Euler方程的第一步,是线性化控制方程。然后使用较低的上对称高斯-赛德尔(LU-SGS)弛豫扫描顺序求解所得的线性联立方程。流体和结构子系统之间是松散耦合的,耦合项使用显式RK方法在时间上进行积分,从而导致隐式-显性(IMEX)RK耦合。通过在弯曲通道中测试超音速,等熵涡旋,证明了求解器的空间精度和自由流保留能力。接下来,使用欧拉涡旋传播测试案例建立求解器的时间精度。还证明了四阶段ESDIRK能够处理比四阶段显式RK大50倍的时间步长。在每种情况下,对用于空间离散化的三阶和四阶SD和二阶后向差分(BDF2)以及用于时间积分的三阶,四阶段ESDIRK进行了测试。由于松散的(明确的)FSI耦合限制了允许的结构变形,因此我们将自己限制在由线性摄动的欧拉方程产生的小谐波振荡。模拟了线性活塞与无粘性可压缩流体之间的相互作用,以证明IMEX联轴器不会污染已实现的高阶方法的空间或时间精度。通过严格的测试,有望为各种流体-结构相互作用问题的强大计算框架奠定基础。

著录项

  • 作者

    Bailoor, Shantanu.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2016
  • 页码 71 p.
  • 总页数 71
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号