首页> 外文期刊>Journal of Applied Meteorology and Climatology >Evaluation of Thunderstorm Predictors for Finland Using Reanalyses and Neural Networks
【24h】

Evaluation of Thunderstorm Predictors for Finland Using Reanalyses and Neural Networks

机译:利用Reanalyses和神经网络评估芬兰雷暴预测因子

获取原文
获取原文并翻译 | 示例
           

摘要

This work evaluates numerous thunderstorm predictors and investigates the use of artificial neural networks (ANNs) for identifying occurrences of thunderstorms in reanalysis data. Environmental conditions favorable for deep, moist convection are derived from 6-hourly ERA-Interim reanalyses, while thunderstorm occurrence in the following 6 h over Finland is derived from lightning location data. By taking advantage of the consistency and large sample size (14 summers) provided by the reanalysis, complex multivariate models can be trained for a robust estimation of convective weather events from model data. This and other methods are used to yield information on the most effective convective predictors in a multivariate setting, which can also benefit the forecasting community. The best ANN found uses 15 inputs and received a Heidke skill score (HSS) of 0.51 on an independent test sample. This is a substantial improvement over the best predictor when used alone, the most unstable lifted index (MULI) with HSS=0.40, the multivariate model having fewer false alarms in particular. After MULI, the most important ANN input was relative humidity near 700 hPa. Dry air aloft was associated with significantly lower thunderstorm probability and flash density regardless of convective available potential energy (CAPE). Other important parameters for thunderstorm development were vertical velocity and low-level theta(e) advection. Finally, the Peirce skill score indicates a clear meridional gradient in skill for categorical forecasts, with higher skill in northern Finland. This analysis suggests that the difference in skill is real and associated with a steeper thunderstorm probability curve in the north, but further studies are needed for a physical explanation.
机译:这项工作评估了许多雷暴预测器,并研究了人工神经网络(ANN)来识别重新分析数据中雷暴的发生。环境条件有利于深度,潮湿对流的源自6小时时代的ERA-Instim Reanalyses,而雷暴发生在以下6小时过度芬兰源于雷电定位数据。通过利用再分析提供的一致性和大型样本量(14兆符),可以从模型数据训练复杂的多变量模型,以获得对对流天气事件的强大估计。这和其他方法用于在多变量设置中产生关于最有效的对流预测因子的信息,这也可以使预测社区受益。最好的安找到使用15个输入,并在独立的测试样品上接收了0.51的Heidke技能评分(HSS)。对于单独使用时,这是最佳预测因子的实质性改进,具有HSS = 0.40的最不稳定的提升指数(MULI),特别是具有较少误报的多变量模型。在Muli之后,最重要的ANN输入是相对湿度附近700 HPA。无论对流可用潜在的能量(斗篷)如何,Aloft Aloft都与雷暴概率和闪光密度显着降低。雷暴发展的其他重要参数是垂直速度和低级θ(e)平流。最后,Peirce技能评分表明,芬兰北部技能更高的技能。该分析表明,技能差异是真实的,北方雷暴雷暴概率曲线有关,但物理解释需要进一步的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号