...
首页> 外文期刊>Journal of Computational Physics >The more actual macroscopic equations recovered from lattice Boltzmann equation and their applications
【24h】

The more actual macroscopic equations recovered from lattice Boltzmann equation and their applications

机译:从格子Boltzmann方程及其应用中恢复的越实际的宏观方程

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Chapman-Enskog (C-E) expansion analysis shows that the lattice Boltzmann equation (LBE) can recover the second-order continuity and N-S equations of the weakly compressible model. However, directly solving the governing equations of weakly compressible model suffers from serious instability. The present paper aims to find the mechanism of good performance of LBE for simulation of incompressible flows by using the weakly compressible model. After detailed analysis, it is found that the macroscopic equations recovered from LBE by using Taylor series expansion, which retain some additional small terms, are slightly different from those by using C-E expansion analysis. The numerical tests indicate that those additional small terms inherently included in the LBE computation play an important role in stabilizing numerical computation, which can explain the mechanism of good performance of LBE to a large degree. On the other hand, it is found that those small terms do not have an obvious effect on the accuracy of numerical solutions. These results indicate that Taylor series expansion can recover the more actual macroscopic equations (MAMEs). Based on MAMEs, this paper presents a new solver based on the conventional finite difference method (FDM) to simulate incompressible flows. Compared with LBE, it has higher computational efficiency, competitive accuracy and acceptable stability. Besides, the drawbacks of LBE, which include the limitation of uniform mesh, coupled time step and mesh spacing, and the extra memory size, can be easily overcome in the discretized MAMEs. (C) 2020 Elsevier Inc. All rights reserved.
机译:Chapman-Enskog(C-E)扩展分析表明,格子Boltzmann等式(LBE)可以恢复弱可压缩模型的二阶连续性和N-S方程。然而,直接解决弱可压缩模型的控制方程受到严重不稳定。本文旨在通过使用弱可压缩模型找到LBE模拟不可压缩流动性能的良好性能机制。在详细分析之后,发现通过使用泰勒序列扩展从LBE恢复的宏观方程,其保留了一些额外的小术语,与使用C-E膨胀分析略有不同。数值测试表明,LBE计算中固有地包括的那些额外的小术语在稳定数值计算方面发挥着重要作用,这可以解释LBE在大程度上的良好性能的机制。另一方面,发现这些小术语对数值解决方案的准确性没有明显影响。这些结果表明,泰勒型膨胀可以恢复更实际的宏观方程(米兰)。本文基于米姆斯,介绍了一种基于传统有限差分法(FDM)来模拟不可压缩流动的新求解器。与LBE相比,它具有更高的计算效率,竞争准确性和可接受的稳定性。此外,LBE的缺点包括均匀网格,耦合时间步长和网状间隔的限制以及额外的存储器尺寸,可以在离散的棉门中容易地克服。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号