...
首页> 外文期刊>Journal of Computational Physics >Arbitrary high order accurate space-time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity
【24h】

Arbitrary high order accurate space-time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity

机译:用于线性弹性的交错非结构状网格上的任意高阶准确时空不连续的Galerkin有限元件

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we propose a new high order accurate space-time discontinuous Galerkin (DG) finite element scheme for the solution of the linear elastic wave equations in first order velocity-stress formulation in two and three-space dimensions on staggered unstructured triangular and tetrahedral meshes. The method reaches arbitrary high order of accuracy in both space and time via the use of space-time basis and test functions. Within the staggered mesh formulation, we define the discrete velocity field in the control volumes of a primary mesh, while the discrete stress tensor is defined on a face-based staggered dual mesh. The space-time DG formulation leads to an implicit scheme that requires the solution of a linear system for the unknown degrees of freedom at the new time level. The number of unknowns is reduced at the aid of the Schur complement, so that in the end only a linear system for the degrees of freedom of the velocity field needs to be solved, rather than a system that involves both stress and velocity. Thanks to the use of a spatially staggered mesh, the stencil of the final velocity system involves only the element and its direct neighbors and the linear system can be efficiently solved via matrix-free iterative methods. Despite the necessity to solve a linear system, the numerical scheme is still computationally efficient. The chosen discretization and the linear nature of the governing PDE system lead to an unconditionally stable scheme, which allows large time steps even for low quality meshes that contain so-called sliver elements. The fully discrete staggered space-time DG method is proven to be energy stable for any order of accuracy, for any mesh and for any time step size. For the particular case of a simple Crank-Nicolson time discretization and homogeneous material, the final velocity system can be proven to be symmetric and positive definite and in this case the scheme is also exactly energy preserving. The new scheme is applied to several
机译:在本文中,我们提出了一种新的高阶准确时空不连续的Galerkin(DG)有限元方案,用于在两个和三个空间尺寸上在交错的非结构化三角形和四面体上的三个空间应力制剂中的线性弹性波方程溶液解决方案网格。通过使用时空基础和测试功能,该方法在空间和时间内达到任意高阶精度。在交错的网格配方中,我们在主网格的控制卷中定义离散速度场,而在基于面部的交错双网格上定义离散应力张量。空时DG配方导致隐式方案,该方案需要在新的时间级别用于未知自由度的线性系统。借助于SCHUR补充,未知数的数量减少,因此在最终仅需要解决速度场的自由度的线性系统,而不是涉及应力和速度的系统。由于使用空间交错的网格,最终速度系统的模板仅涉及元件及其直接邻居,并且可以通过无矩阵迭代方法有效地解决线性系统。尽管有必要解决线性系统,但数值方案仍在计算效率。所选择的离散化和控制PDE系统的线性性质导致无条件稳定的方案,即使对于含有所谓的条子元件的低质量网格,也允许大的时间步骤。完全离散的交错空间DG方法被证明是任何准确性的能量稳定,对于任何网格和任何时间步长。对于简单的曲柄 - 尼古尔森时间离散化和均质材料的特定情况,可以证明最终的速度系统是对称的,并且在这种情况下,该方案也是精确的节能。新方案适用于几个

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号