...
首页> 外文期刊>Journal of Computational Physics >A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes
【24h】

A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes

机译:非结构四面体网格上三维不可压缩Navier-Stokes方程的交错时空不连续Galerkin方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper we propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. As is typical for space-time DG schemes, the discrete solution is represented in terms of space-time basis functions. This allows to achieve very high order of accuracy also in time, which is not easy to obtain for the incompressible Navier-Stokes equations. Similarly to staggered finite difference schemes, in our approach the discrete pressure is defined on the primary tetrahedral grid, while the discrete velocityis defined on a face-based staggered dualgrid. While staggered meshes are state of the art in classical finite difference schemes for the incompressible Navier-Stokes equations, their use in high order DG schemes is still quite rare. A very simple and efficient Picard iteration is used in order to derive a space-time pressure correction algorithm that achieves also high order of accuracy in time and that avoids the direct solution of global nonlinear systems. Formal substitution of the discrete momentum equation on the dual grid into the discrete continuity equation on the primary grid yields a very sparse five-point block system for the scalar pressure, which is conveniently solved with a matrix-free GMRES algorithm. From numerical experiments we find that the linear system seems to be reasonably well conditioned, since all simulations shown in this paper could be run without the use of any preconditioner, even up to very high polynomial degrees. For a piecewise constant polynomial approximation in time and if pressure boundary conditions are specified at least in one point, the resulting system is, in addition, symmetric and positive definite. This allows us to use even faster iterative solvers, like the conjugate gradient method.
机译:在本文中,我们提出了一种新颖的任意高阶精确半隐式时空不连续Galerkin方法,用于求解交错非结构弯曲四面体网格上的三维不可压缩Navier-Stokes方程。正如空时DG方案的典型做法,离散解以时空基函数表示。这使得也可以在时间上达到很高的精度,这对于不可压缩的Navier-Stokes方程来说不容易获得。类似于交错有限差分方案,在我们的方法中,离散压力定义在主四面体网格上,而离散速度定义在基于面的交错双网格上。尽管交错网格在不可压缩的Navier-Stokes方程的经典有限差分方案中是最新技术,但它们在高阶DG方案中的使用仍然很少。为了导出一种时空压力校正算法,使用了一种非常简单且有效的Picard迭代算法,该算法还可以在时间上获得较高的精度,并且可以避免全局非线性系统的直接求解。将双网格上的离散动量方程形式正式替换为主网格上的离散连续性方程,可以得到标量压力非常稀疏的五点模块系统,可以使用无矩阵GMRES算法方便地解决。从数值实验中,我们发现线性系统似乎条件良好,因为本文显示的所有模拟都可以在不使用任何预处理器的情况下运行,甚至可以在非常高的多项式度数下运行。对于时间上的分段常数多项式逼近,并且如果至少在一个点上指定了压力边界条件,则所得系统还将是对称且为正定的。这使我们可以使用更快的迭代求解器,例如共轭梯度法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号