...
首页> 外文期刊>Journal of Computational Physics >Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification
【24h】

Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification

机译:贝叶斯深卷积的编码器 - 解码器用于代理建模和不确定性量化

获取原文
获取原文并翻译 | 示例

摘要

We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep convolutional encoder-decoder network in a similar fashion to approaches considered in deep learning for image-to-image regression tasks. Since normal neural networks are data-intensive and cannot provide predictive uncertainty, we propose a Bayesian approach to convolutional neural nets. A recently introduced variational gradient descent algorithm based on Stein's method is scaled to deep convolutional networks to perform approximate Bayesian inference on millions of uncertain network parameters. This approach achieves state of the art performance in terms of predictive accuracy and uncertainty quantification in comparison to other approaches in Bayesian neural networks as well as techniques that include Gaussian processes and ensemble methods even when the training data size is relatively small. To evaluate the performance of this approach, we consider standard uncertainty quantification tasks for flow in heterogeneous media using limited training data consisting of permeability realizations and the corresponding velocity and pressure fields. The performance of the surrogate model developed is very good even though there is no underlying structure shared between the input (permeability) and output (flow/pressure) fields as is often the case in the image-to-image regression models used in computer vision problems. Studies are performed with an underlying stochastic input dimensionality up to 4225 where most other uncertainty quantification methods fail. Uncertainty propagation tasks are considered and the predictive output Bayesian statistics are compared to those obtained with Monte Carlo estimates. (C) 2018 Elsevier Inc. All rights reserved.
机译:我们有兴趣开发用于不确定量化的代理模型和随机PDE管理的问题,使用深度卷积编码器 - 解码器网络以类似的方式到解图像到图像回归任务的深度学习中考虑的方法。由于正常的神经网络是数据密集型的,并且不能提供预测的不确定性,我们提出了一种跳投方法来卷积神经网络。基于Stein方法的最近引入的变分梯度下降算法被缩放到深度卷积网络,以对数百万不确定的网络参数执行近似贝叶斯推断。与贝叶斯神经网络中的其他方法相比,这种方法在预测准确性和不确定性量化方面实现了最先进的状态,以及包括高斯过程和集合方法的技术,即使训练数据大小相对较小。为了评估这种方法的性能,我们考虑使用具有磁导率实现的有限训练数据和相应的速度和压力场的有限训练数据来考虑用于异构介质的流量的标准不确定性量化任务。即使在计算机视觉中使用的图像到图像回归模型中的图像到图像回归模型中的情况下,替代模型开发的代理模型的性能也非常好。问题。使用潜在的随机输入维度进行研究,最高可达4225,其中大多数其他不确定量化方法失败。考虑不确定性传播任务,并将预测输出贝叶斯统计数据与Monte Carlo估计获得的那些进行比较。 (c)2018年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号