...
首页> 外文期刊>Journal of Computational Physics >Axisymmetric charge-conservative electromagnetic particle simulation algorithm on unstructured grids: Application to microwave vacuum electronic devices
【24h】

Axisymmetric charge-conservative electromagnetic particle simulation algorithm on unstructured grids: Application to microwave vacuum electronic devices

机译:非对称电荷保守电磁粒子仿真算法在非结构化网格中:微波真空电子设备的应用

获取原文
获取原文并翻译 | 示例
           

摘要

We present a charge-conservative electromagnetic particle-in-cell (EM-PIC) algorithm optimized for the analysis of vacuum electronic devices (VEDs) with cylindrical symmetry (axisymmetry). We exploit the axisymmetry present in the device geometry, fields, and sources to reduce the dimensionality of the problem from 3D to 2D. Further, we employ 'transformation optics' principles to map the original problem in polar coordinates with metric tensor diag(1,rho(2), 1) to an equivalent problem on a Cartesian metric tensor diag(1, 1, 1) with an effective (artificial) inhomogeneous medium introduced. The resulting problem in the meridian (rho z) plane is discretized using an unstructured 2D mesh considering TE phi-polarized fields. Electromagnetic field and source (node-based charges and edge-based currents) variables are expressed as differential forms of various degrees, and discretized using Whitney forms. Using leapfrog time integration, we obtain a mixed epsilon - B finite-element time-domain scheme for the full-discrete Maxwell's equations. We achieve a local and explicit time update for the field equations by employing the sparse approximate inverse (SPAI) algorithm. Interpolating field values to particles' positions for solving Newton-Lorentz equations of motion is also done via Whitney forms. Particles are advanced using the Boris algorithm with relativistic correction. A recently introduced charge-conserving scatter scheme tailored for 2D unstructured grids is used in the scatter step. The algorithm is validated considering cylindrical cavity and space-charge-limited cylindrical diode problems. We use the algorithm to investigate the physical performance of VEDs designed to harness particle bunching effects arising from the coherent (resonance) Cerenkov electron beam interactions within micro-machined slow wave structures. (C) 2017 Elsevier Inc. All rights reserved.
机译:我们提出了一种充电保守的电磁粒子 - 细胞(EM-PIC)算法,用于分析真空电子设备(VEDS),具有圆柱对称(轴对称)。我们利用设备几何,字段和源中存在的轴对称,以将问题的维度从3D到2D降低。此外,我们采用“转换光学器件”原则将原始问题与度量曲线诊断(1,rho(2),1)映射到笛卡尔公制缩小诊断(1,1,1,1)上的等同问题引入有效(人工)不均匀介质。考虑到PHI极化场的非结构化2D网格,包括非结构化的2D网格中所产生的问题(RHO Z)平面的问题。电磁场和源(基于节点基电荷和边缘电流)变量表示为各种度的差异形式,并且使用惠特形式离散化。使用跨越时间集成,我们获得了全离散麦克斯韦方程的混合epsilon - B有限元时间域方案。我们通过采用稀疏近似逆(SPAI)算法来实现现场方程的本地和显式时间更新。用于颗粒用于求解牛顿 - Lorentz运动的颗粒的内插场值也通过惠特尼形式完成。使用具有相对论校正的Boris算法,粒子进行高级。在散射步骤中使用最近引入的电荷节约散散栅格量身定制,用于散射步骤。考虑圆柱形腔和空间电荷限制圆柱形二极管问题验证了该算法。我们使用该算法研究VED的物理性能,所述vEDS设计用于利用从微加工的慢波结构内的相干(共振)CERENKOV电子束相互作用产生的粒子束缚效应。 (c)2017年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号