首页> 外文期刊>Journal of Computational Physics >Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics
【24h】

Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics

机译:监督随机动力学长时间拉格朗日仿真的平行时间算法:应用于流体动力学的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Lagrangian particle methods based on detailed atomic and molecular models are powerful computational tools for studying the dynamics of microscale and nanoscale systems. However, the maximum time step is limited by the smallest oscillation period of the fastest atomic motion, rendering long-time simulations very expensive. To resolve this bottleneck, we propose a supervised parallel-in-timealgorithm for stochastic dynamics (SPASD) to accelerate long-time Lagrangian particle simulations. Our method is inspired by bottom-up coarse-graining projections that yield mean-field hydrodynamic behavior in the continuum limit. Here as an example, we use the dissipative particle dynamics (DPD) as the Lagrangian particle simulator that is supervised by its macroscopic counterpart, i.e., the Navier-Stokes simulator. The low-dimensional macroscopic system (here, the Navier-Stokes solver) serves as a predictor to supervise the high-dimensional Lagrangian simulator, in a predictorcorrector type algorithm. The results of the Lagrangian simulation then correct the meanfield prediction and provide the proper microscopic details (e.g., consistent fluctuations, correlations, etc.). The unique feature that setsSPASDapart from other multiscale methods is the use of a low-fidelity macroscopic model as a predictor. The macro-model can be approximate and even inconsistent with the microscale description, butSPASDanticipates the deviation and corrects it internally to recover the true dynamics. We first present the algorithm and analyze its theoretical speedup, and subsequently we present the accuracy and convergence of the algorithm for the time-dependent plane Poiseuille flow, demonstrating thatSPASDconverges exponentially fast over iterations, irrespective of the accuracy of the predictor. Moreover, the fluctuating characteristics of the stochastic dynamics are identical to the unsupervised (serial in time) DPD simulation. We also compare the performance ofSPASDto the conventional spatial d
机译:基于详细原子和分子模型的拉格朗日粒子方法是研究微观和纳米级系统的动态的强大的计算工具。然而,最大时间步长受最快原子运动的最小振荡周期的限制,使得长时间仿真非常昂贵。为了解决这一瓶颈,我们提出了一种监督的平行管内算法,用于随机动力学(SPASD),以加速长期拉格朗日粒子模拟。我们的方法是通过自下而上的粗晶凸起的启发,即在连续箱里屈服于屈服场流体动力学行为。在这里作为示例,我们使用耗散粒子动态(DPD)作为拉格朗日粒子模拟器,由其宏观对应物,即Navier-Stokes模拟器监督。低维宏观系统(这里,Navier-Stokes求解器)用作监控高维拉格朗日模拟器的预测器,以预测粗校正型算法。拉格朗日仿真的结果校正平均特性预测并提供适当的微观细节(例如,一致的波动,相关性等)。来自其他多尺度方法的SetSpasdapart的独特功能是使用低保真宏观模型作为预测。宏模型可以是近似且甚至与微观描述不一致,但是偏差并纠正内部以恢复真实动态。我们首先介绍该算法并分析其理论加速,随后我们介绍了时间依赖的平面Poiseuille流程的算法的准确性和收敛性,而是在迭代的准确性上表现快速地展示了该算法。此外,随机动力学的波动特性与无监督(串行)DPD模拟相同。我们还将SPASDTO的性能进行了比较了传统空间D.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号