...
首页> 外文期刊>Journal of chemical information and modeling >Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals
【24h】

Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals

机译:不确定量化的混合机学习/密度泛函理论晶体的高通量筛选方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Computational high throughput screening (HTS) has emerged as a significant tool in material science to accelerate the discovery of new materials with target properties in recent years. However, despite many successful cases in which HTS led to the novel discovery, currently, the major bottleneck in HTS is a large computational cost of density functional theory (DFT) calculations that scale cubically with system size, limiting the chemical space that can be explored. The present work aims at addressing this computational burden of HTS by presenting a machine learning (ML) framework that can efficiently explore the chemical space. Our model is built upon an existing crystal graph convolutional neural network (CGCNN) to obtain formation energy of a crystal structure but is modified to allow uncertainty quantification for each prediction using the hyperbolic tangent activation function and dropout algorithm (CGCNN-HD). The uncertainty quantification is particularly important since typical usage of CGCNN (due to the lack of gradient implementation) does not involve structural relaxation which could cause substantial prediction errors. The proposed method is benchmarked against an existing application that identified promising photoanode material among the >7,000 hypothetical Mg-Mn-O ternary compounds using all DFT-HTS. In our approach, we perform the approximate HTS using CGCNN-HD and refine the results using full DFT for those selected (denoted as ML/DFT-HTS). The proposed hybrid model reduces the required DFT calculations by a factor of >50 compared to the previous DFT-HTS in making the same discovery of Mg2MnO4, experimentally validated new photoanode material. Further analysis demonstrates that the addition of HD components with uncertainty measures in the CGCNN-HD model increased the discoverability of promising materials relative to all DFT-HTS from 30% (CGCNN) to 68% (CGCNN-HD). The present ML/DFT-HTS with uncertainty quantification can thus be a fast alternative to DFT-HTS for efficient exploration of the vast chemical space.
机译:计算高吞吐量筛选(HTS)作为材料科学的重要工具,以加速近年来与目标特性的新材料发现。然而,尽管HTS导致新颖的发现,但目前,HTS的主要瓶颈是密度函数理论(DFT)计算的大型计算成本,其统计系统尺寸均可,限制了可以探索的化学空间。目前的工作旨在通过提出可以有效地探索化学空间的机器学习(ML)框架来解决HTS的这种计算负担。我们的模型基于现有的晶体图卷积神经网络(CGCNN),以获得晶体结构的形成能量,而是被修改以允许使用双曲线切线激活功能和辍学算法(CGCNN-HD)来允许对每个预测的不确定性量化。由于CGCNN的典型使用(由于缺乏梯度实施),不符合可能导致大量预测误差的结构松弛,因此不确定量尤为重要。该方法采用所有DFT-HTS在> 7,000个假想的Mg-MN-o三元化合物中鉴定了有前途的光处理材料的现有应用。在我们的方法中,我们使用CGCNN-HD执行近似HTS,并使用全DFT对选定的完整DFT进行优化(表示为ML / DFT-HTS)。所提出的混合模型将所需的DFT计算减少到与先前的DFT-HTS相比,在制作MG2MNO4的相同发现时,通过先前的DFT-HTS进行了一系列,实验验证的新光电码材料。进一步的分析表明,CGCNN-HD模型中的具有不确定性措施的高清组分增加了相对于30%(CGCNN)至68%(CGCN-HD)的所有DFT-HTS的发现性。因此,具有不确定量化的本发明的ML / DFT-HTS可以是DFT-HTS的快速替代方案,以便于探索庞大的化学空间。

著录项

  • 来源
  • 作者单位

    Korea Adv Inst Sci &

    Technol KAIST Dept Chem &

    Biomol Engn Daejeon 34141 South Korea;

    Korea Adv Inst Sci &

    Technol KAIST Dept Chem &

    Biomol Engn Daejeon 34141 South Korea;

    Korea Adv Inst Sci &

    Technol KAIST Dept Chem &

    Biomol Engn Daejeon 34141 South Korea;

    Korea Adv Inst Sci &

    Technol KAIST Dept Chem &

    Biomol Engn Daejeon 34141 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;化学工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号