...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Gaussian Basis Sets for Crystalline Solids: All-Purpose Basis Set Libraries vs System-Specific Optimizations
【24h】

Gaussian Basis Sets for Crystalline Solids: All-Purpose Basis Set Libraries vs System-Specific Optimizations

机译:Gaussian Crystalline Solids的基础集:All-Amplated Set Libraries VS系统专用优化

获取原文
获取原文并翻译 | 示例
           

摘要

It is customary in molecular quantum chemistry to adopt basis set libraries in which the basis sets are classified according to either their size (triple-zeta quadruple-zeta, ...) and the method/property they are optimal for (correlation-consistent, linear-response, ...) but not according to the chemistry of the system to be studied. In fact the vast majority of molecules is quite homogeneous in terms of density (i.e., atomic distances) and types of bond involved (covalent or dispersive). The situation is not the same for solids, in which the same chemical element can be found having metallic, ionic, covalent, or dispersively bound character in different crystalline forms or compounds, with different packings. This situation calls for a different approach to the choice of basis sets, namely a system-specific optimization of the basis set that requires a practical algorithm that could be used on a routine basis. In this work we develop a basis set optimization method based on an algorithm-similar to the direct inversion in the iterative subspace-that we name BDIIS. The total energy of the system is minimized together with the condition number of the overlap matrix as proposed by VandeVondele et al. [VandeVondele et al. J. Chem. Phys. 2007, 227, 114105]. The details of the method are here presented, and its performance in optimizing valence orbitals is shown. As demonstrative systems we consider simple prototypical solids such as diamond, graphene sodium chloride, and LiH, and we show how basis set optimizations have certain advantages also toward the use of large quadruple-zeta) basis sets in solids, both at the DFT and Hartree-Fock level.
机译:在分子量子化学中常规,采用基础集图文文库,其中基础集根据其大小(Triple-Zeta四肢Zeta,...)和它们是最佳的方法/属性(相关 - 一致,线性反应,......)但不是根据系统的化学研究。实际上,绝大多数分子在密度(即原子距离)和所涉及的粘合类型(共价或分散)方面非常均匀。对于固体,情况不相同,其中可以发现相同的化学元素具有不同的结晶形式或化合物的金属,离子,共价或分散性结合的性质,其中包含不同的填料。这种情况调用了不同的方法选择基础集,即所需的基础集的特定于系统的优化,这需要一种可以在例行使用的实用算法。在这项工作中,我们基于算法的基础集优化方法 - 类似于迭代子空间中的直接反演 - 我们命名BDIIS。系统的总能量与Vandevondele等人提出的重叠矩阵的条件数量最小化。 [Vandevondele等。 J.Chem。物理。 2007,227,114105]。这里提出了该方法的细节,并显示了在优化价轨道上的性能。作为示范系统,我们考虑了简单的原型固体,如金刚石,石墨烯钠和LIH,并且我们展示了基础设定优化在DFT和HARTRE中的使用大型Quadruple-Zeta)基础集的使用情况也有一定的优点 - 步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号