...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Accuracy of Hybrid Functionals with Non-Self-Consistent Kohn-Sham Orbitals for Predicting the Properties of Semiconductors
【24h】

Accuracy of Hybrid Functionals with Non-Self-Consistent Kohn-Sham Orbitals for Predicting the Properties of Semiconductors

机译:用于预测半导体性质的非自我一致的Kohn-Shamborbor的混合功能的准确性

获取原文
获取原文并翻译 | 示例

摘要

Accurately modeling the electronic structure of materials is a persistent challenge to high-throughput screening. A promising means of balancing accuracy against computational cost is non-self-consistent calculations with hybrid density-functional theory, where the electronic band energies are evaluated using a hybrid functional from orbitals obtained with a less demanding (semi)local functional. We have quantified the performance of this technique for predicting the physical properties of 16 tetrahedral semiconductors with bandgaps from 0.2 to 5.5 eV. Provided the base functional predicts a nonmetallic electronic structure, bandgaps within 5% of the PBEO and HSE06 gaps can be obtained with an order of magnitude reduction in computing time. The positions of the valence and conduction band extrema and the Fermi level are well reproduced, enabling calculation of the band dispersion, density of states, and dielectric properties using Fermi's Golden Rule. While the error in the non-self-consistent total energies is similar to 50 meV atom(-1), the energy-volume curves are reproduced accurately enough to obtain the equilibrium volume and bulk modulus with minimal error. We also test the dielectric-dependent scPBEO functional and obtain bandgaps and dielectric constants to within 2.5% of the self-consistent results, which amounts to a significant improvement over self-consistent PBEO for a similar computational cost. We identify cases where the nonself-consistent approach is expected to perform poorly and demonstrate that partial self-consistency provides a practical and efficient workaround. Finally, we perform proof-of-concept calculations on CoO and NiO to demonstrate the applicability of the technique to strongly correlated open-shell transition-metal oxides.
机译:准确建模材料的电子结构是对高通量筛选的持续挑战。有希望的平衡计算成本的准确性是具有混合密度 - 功能理论的非自我一致的计算,其中使用从获得的轨道的混合功能评估电子频带能量,该轨道具有较低的令人要求苛刻的(半)局部功能。我们已经量化了该技术的性能,以预测16个四面体半导体的物理性质,带隙为0.2至5.5eV。如果基础功能预测,可以在计算时间减小的幅度减小的阶数,可以获得PBEO和HSE06间隙的5%内的带隙。使用费米的黄金法则,因此良好地再现了价值和传导频段和传导频段和传导频段和费米水平的位置,从而能够计算频带色散,状态密度和介电性质。虽然非自我一致总能量中的误差类似于50mev原子(-1),但是能够准确地再现能量曲线以获得具有最小误差的平衡体积和散装模量。我们还测试介电依赖性SCPBEO功能,并获得带隙和介电常数在自我一致结果的2.5%以内,这相当于对自我支配PBEO的显着改进,以获得类似的计算成本。我们确定了预期非本质 - 一致方法的案例,并证明部分自我一致性提供了实用和有效的解决方法。最后,我们对COO和NIO进行概念证明计算,以证明该技术适用于强烈相关的开壳过渡金属氧化物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号